X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Ftactics%2FproofEngineHelpers.ml;h=fd336910ea4a899e3d5fcdc15870bffd929afb12;hb=97c2d258a5c524eb5c4b85208899d80751a2c82f;hp=20e8341a6c90d987a401491902a26898f85f7818;hpb=180f30d039f1d2894c6a118ecee5549835127c72;p=helm.git diff --git a/helm/ocaml/tactics/proofEngineHelpers.ml b/helm/ocaml/tactics/proofEngineHelpers.ml index 20e8341a6..fd336910e 100644 --- a/helm/ocaml/tactics/proofEngineHelpers.ml +++ b/helm/ocaml/tactics/proofEngineHelpers.ml @@ -23,7 +23,7 @@ * http://cs.unibo.it/helm/. *) -exception Bad_pattern of string +exception Bad_pattern of string Lazy.t let new_meta_of_proof ~proof:(_, metasenv, _, _) = CicMkImplicit.new_meta metasenv [] @@ -46,9 +46,10 @@ let subst_meta_in_proof proof meta term newmetasenv = List.map (function Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in s)) - | Some (n,Cic.Def (s,None)) -> Some (n,Cic.Def ((subst_in s),None)) + | Some (n,Cic.Def (s,None)) -> Some (n,Cic.Def (subst_in s,None)) | None -> None - | Some (_,Cic.Def (_,Some _)) -> assert false + | Some (n,Cic.Def (bo,Some ty)) -> + Some (n,Cic.Def (subst_in bo,Some (subst_in ty))) ) canonical_context in i,canonical_context',(subst_in ty) @@ -92,8 +93,9 @@ let subst_meta_and_metasenv_in_proof proof meta subst_in newmetasenv = None -> None | Some (i,Cic.Decl t) -> Some (i,Cic.Decl (subst_in t)) | Some (i,Cic.Def (t,None)) -> - Some (i,Cic.Def ((subst_in t),None)) - | Some (_,Cic.Def (_,Some _)) -> assert false + Some (i,Cic.Def (subst_in t,None)) + | Some (i,Cic.Def (bo,Some ty)) -> + Some (i,Cic.Def (subst_in bo,Some (subst_in ty))) ) canonical_context in (m,canonical_context',subst_in ty)::i @@ -111,147 +113,573 @@ let compare_metasenvs ~oldmetasenv ~newmetasenv = ;; (** finds the _pointers_ to subterms that are alpha-equivalent to wanted in t *) -let find_subterms ~eq ~wanted t = - let rec find w t = - if eq w t then - [t] - else +let find_subterms ~subst ~metasenv ~ugraph ~wanted ~context t = + let rec find subst metasenv ugraph context w t = + try + let subst,metasenv,ugraph = + CicUnification.fo_unif_subst subst context metasenv w t ugraph + in + subst,metasenv,ugraph,[context,t] + with + CicUnification.UnificationFailure _ + | CicUnification.Uncertain _ -> match t with | Cic.Sort _ - | Cic.Rel _ -> [] + | Cic.Rel _ -> subst,metasenv,ugraph,[] | Cic.Meta (_, ctx) -> List.fold_left ( - fun acc e -> + fun (subst,metasenv,ugraph,acc) e -> match e with - | None -> acc - | Some t -> find w t @ acc - ) [] ctx - | Cic.Lambda (_, t1, t2) - | Cic.Prod (_, t1, t2) - | Cic.LetIn (_, t1, t2) -> - find w t1 @ find (CicSubstitution.lift 1 w) t2 + | None -> subst,metasenv,ugraph,acc + | Some t -> + let subst,metasenv,ugraph,res = + find subst metasenv ugraph context w t + in + subst,metasenv,ugraph, res @ acc + ) (subst,metasenv,ugraph,[]) ctx + | Cic.Lambda (name, t1, t2) + | Cic.Prod (name, t1, t2) -> + let subst,metasenv,ugraph,rest1 = + find subst metasenv ugraph context w t1 in + let subst,metasenv,ugraph,rest2 = + find subst metasenv ugraph (Some (name, Cic.Decl t1)::context) + (CicSubstitution.lift 1 w) t2 + in + subst,metasenv,ugraph,rest1 @ rest2 + | Cic.LetIn (name, t1, t2) -> + let subst,metasenv,ugraph,rest1 = + find subst metasenv ugraph context w t1 in + let subst,metasenv,ugraph,rest2 = + find subst metasenv ugraph (Some (name, Cic.Def (t1,None))::context) + (CicSubstitution.lift 1 w) t2 + in + subst,metasenv,ugraph,rest1 @ rest2 | Cic.Appl l -> - List.fold_left (fun acc t -> find w t @ acc) [] l - | Cic.Cast (t, ty) -> find w t @ find w ty + List.fold_left + (fun (subst,metasenv,ugraph,acc) t -> + let subst,metasenv,ugraph,res = + find subst metasenv ugraph context w t + in + subst,metasenv,ugraph,res @ acc) + (subst,metasenv,ugraph,[]) l + | Cic.Cast (t, ty) -> + let subst,metasenv,ugraph,rest = + find subst metasenv ugraph context w t in + let subst,metasenv,ugraph,resty = + find subst metasenv ugraph context w ty + in + subst,metasenv,ugraph,rest @ resty | Cic.Implicit _ -> assert false | Cic.Const (_, esubst) | Cic.Var (_, esubst) | Cic.MutInd (_, _, esubst) | Cic.MutConstruct (_, _, _, esubst) -> - List.fold_left (fun acc (_, t) -> find w t @ acc) [] esubst + List.fold_left + (fun (subst,metasenv,ugraph,acc) (_, t) -> + let subst,metasenv,ugraph,res = + find subst metasenv ugraph context w t + in + subst,metasenv,ugraph,res @ acc) + (subst,metasenv,ugraph,[]) esubst | Cic.MutCase (_, _, outty, indterm, patterns) -> - find w outty @ find w indterm @ - List.fold_left (fun acc p -> find w p @ acc) [] patterns + let subst,metasenv,ugraph,resoutty = + find subst metasenv ugraph context w outty in + let subst,metasenv,ugraph,resindterm = + find subst metasenv ugraph context w indterm in + let subst,metasenv,ugraph,respatterns = + List.fold_left + (fun (subst,metasenv,ugraph,acc) p -> + let subst,metaseng,ugraph,res = + find subst metasenv ugraph context w p + in + subst,metasenv,ugraph,res @ acc + ) (subst,metasenv,ugraph,[]) patterns + in + subst,metasenv,ugraph,resoutty @ resindterm @ respatterns | Cic.Fix (_, funl) -> + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funl + in List.fold_left ( - fun acc (_, _, ty, bo) -> find w ty @ find w bo @ acc - ) [] funl + fun (subst,metasenv,ugraph,acc) (_, _, ty, bo) -> + let subst,metasenv,ugraph,resty = + find subst metasenv ugraph context w ty in + let subst,metasenv,ugraph,resbo = + find subst metasenv ugraph (tys @ context) w bo + in + subst,metasenv,ugraph, resty @ resbo @ acc + ) (subst,metasenv,ugraph,[]) funl | Cic.CoFix (_, funl) -> + let tys = + List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funl + in List.fold_left ( - fun acc (_, ty, bo) -> find w ty @ find w bo @ acc - ) [] funl + fun (subst,metasenv,ugraph,acc) (_, ty, bo) -> + let subst,metasenv,ugraph,resty = + find subst metasenv ugraph context w ty in + let subst,metasenv,ugraph,resbo = + find subst metasenv ugraph (tys @ context) w bo + in + subst,metasenv,ugraph, resty @ resbo @ acc + ) (subst,metasenv,ugraph,[]) funl in - find wanted t + find subst metasenv ugraph context wanted t -let select ~term ~pattern = - let add_ctx i name entry = - (Some (name, entry)) :: i +let select_in_term ~metasenv ~context ~ugraph ~term ~pattern:(wanted,where) = + let add_ctx context name entry = + (Some (name, entry)) :: context + in + let map2 error_msg f l1 l2 = + try + List.map2 f l1 l2 + with + | Invalid_argument _ -> raise (Bad_pattern (lazy error_msg)) in - (* i is the number of binder traversed *) - let rec aux i pattern term = - match (pattern, term) with - | Cic.Implicit (Some `Hole), t -> [i,t] + let rec aux context where term = + match (where, term) with + | Cic.Implicit (Some `Hole), t -> [context,t] | Cic.Implicit (Some `Type), t -> [] | Cic.Implicit None,_ -> [] | Cic.Meta (_, ctxt1), Cic.Meta (_, ctxt2) -> List.concat - (List.map2 + (map2 "wrong number of argument in explicit substitution" (fun t1 t2 -> - (match (t1, t2) with Some t1, Some t2 -> aux i t1 t2 | _ -> [])) + (match (t1, t2) with + Some t1, Some t2 -> aux context t1 t2 + | _ -> [])) ctxt1 ctxt2) - | Cic.Cast (te1, ty1), Cic.Cast (te2, ty2) -> aux i te1 te2 @ aux i ty1 ty2 + | Cic.Cast (te1, ty1), Cic.Cast (te2, ty2) -> + aux context te1 te2 @ aux context ty1 ty2 | Cic.Prod (Cic.Anonymous, s1, t1), Cic.Prod (name, s2, t2) | Cic.Lambda (Cic.Anonymous, s1, t1), Cic.Lambda (name, s2, t2) -> - aux i s1 s2 @ aux (add_ctx i name (Cic.Decl s2)) t1 t2 + aux context s1 s2 @ aux (add_ctx context name (Cic.Decl s2)) t1 t2 | Cic.Prod (Cic.Name n1, s1, t1), Cic.Prod ((Cic.Name n2) as name , s2, t2) | Cic.Lambda (Cic.Name n1, s1, t1), Cic.Lambda ((Cic.Name n2) as name, s2, t2) when n1 = n2-> - aux i s1 s2 @ aux (add_ctx i name (Cic.Decl s2)) t1 t2 + aux context s1 s2 @ aux (add_ctx context name (Cic.Decl s2)) t1 t2 | Cic.Prod (name1, s1, t1), Cic.Prod (name2, s2, t2) | Cic.Lambda (name1, s1, t1), Cic.Lambda (name2, s2, t2) -> [] | Cic.LetIn (Cic.Anonymous, s1, t1), Cic.LetIn (name, s2, t2) -> - aux i s1 s2 @ aux (add_ctx i name (Cic.Def (s2,None))) t1 t2 + aux context s1 s2 @ aux (add_ctx context name (Cic.Def (s2,None))) t1 t2 | Cic.LetIn (Cic.Name n1, s1, t1), Cic.LetIn ((Cic.Name n2) as name, s2, t2) when n1 = n2-> - aux i s1 s2 @ aux (add_ctx i name (Cic.Def (s2,None))) t1 t2 + aux context s1 s2 @ aux (add_ctx context name (Cic.Def (s2,None))) t1 t2 | Cic.LetIn (name1, s1, t1), Cic.LetIn (name2, s2, t2) -> [] - | Cic.Appl terms1, Cic.Appl terms2 -> auxs i terms1 terms2 + | Cic.Appl terms1, Cic.Appl terms2 -> auxs context terms1 terms2 | Cic.Var (_, subst1), Cic.Var (_, subst2) | Cic.Const (_, subst1), Cic.Const (_, subst2) | Cic.MutInd (_, _, subst1), Cic.MutInd (_, _, subst2) | Cic.MutConstruct (_, _, _, subst1), Cic.MutConstruct (_, _, _, subst2) -> - auxs i (List.map snd subst1) (List.map snd subst2) + auxs context (List.map snd subst1) (List.map snd subst2) | Cic.MutCase (_, _, out1, t1, pat1), Cic.MutCase (_ , _, out2, t2, pat2) -> - aux i out1 out2 @ aux i t1 t2 @ auxs i pat1 pat2 + aux context out1 out2 @ aux context t1 t2 @ auxs context pat1 pat2 | Cic.Fix (_, funs1), Cic.Fix (_, funs2) -> + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs2 + in List.concat - (List.map2 + (map2 "wrong number of mutually recursive functions" (fun (_, _, ty1, bo1) (_, _, ty2, bo2) -> - aux i ty1 ty2 @ aux i bo1 bo2) + aux context ty1 ty2 @ aux (tys @ context) bo1 bo2) funs1 funs2) | Cic.CoFix (_, funs1), Cic.CoFix (_, funs2) -> + let tys = + List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs2 + in List.concat - (List.map2 - (fun (_, ty1, bo1) (_, ty2, bo2) -> aux i ty1 ty2 @ aux i bo1 bo2) + (map2 "wrong number of mutually co-recursive functions" + (fun (_, ty1, bo1) (_, ty2, bo2) -> + aux context ty1 ty2 @ aux (tys @ context) bo1 bo2) funs1 funs2) | x,y -> raise (Bad_pattern - (Printf.sprintf "Pattern %s versus term %s" + (lazy (Printf.sprintf "Pattern %s versus term %s" (CicPp.ppterm x) - (CicPp.ppterm y))) - and auxs i terms1 terms2 = (* as aux for list of terms *) - List.concat (List.map2 (fun t1 t2 -> aux i t1 t2) terms1 terms2) + (CicPp.ppterm y)))) + and auxs context terms1 terms2 = (* as aux for list of terms *) + List.concat (map2 "wrong number of arguments in application" + (fun t1 t2 -> aux context t1 t2) terms1 terms2) in - aux [] pattern term + let context_len = List.length context in + let roots = aux context where term in + match wanted with + None -> [],metasenv,ugraph,roots + | Some wanted -> + let rec find_in_roots = + function + [] -> [],metasenv,ugraph,[] + | (context',where)::tl -> + let subst,metasenv,ugraph,tl' = find_in_roots tl in + let subst,metasenv,ugraph,found = + let wanted, metasenv, ugraph = wanted context' metasenv ugraph in + find_subterms ~subst ~metasenv ~ugraph ~wanted ~context:context' + where + in + subst,metasenv,ugraph,found @ tl' + in + find_in_roots roots +(** create a pattern from a term and a list of subterms. +* the pattern is granted to have a ? for every subterm that has no selected +* subterms +* @param equality equality function used while walking the term. Defaults to +* physical equality (==) *) let pattern_of ?(equality=(==)) ~term terms = let (===) x y = equality x y in + let not_found = false, Cic.Implicit None in let rec aux t = match t with - | t when List.exists (fun t' -> t === t') terms -> Cic.Implicit (Some `Hole) - | Cic.Var (uri, subst) -> Cic.Var (uri, aux_subst subst) + | t when List.exists (fun t' -> t === t') terms -> + true,Cic.Implicit (Some `Hole) + | Cic.Var (uri, subst) -> + let b,subst = aux_subst subst in + if b then + true,Cic.Var (uri, subst) + else + not_found | Cic.Meta (i, ctxt) -> - let ctxt = - List.map (function None -> None | Some t -> Some (aux t)) ctxt + let b,ctxt = + List.fold_right + (fun e (b,ctxt) -> + match e with + None -> b,None::ctxt + | Some t -> let bt,t = aux t in b||bt ,Some t::ctxt + ) ctxt (false,[]) in - Cic.Meta (i, ctxt) - | Cic.Cast (t, ty) -> Cic.Cast (aux t, aux ty) - | Cic.Prod (name, s, t) -> Cic.Prod (name, aux s, aux t) - | Cic.Lambda (name, s, t) -> Cic.Lambda (name, aux s, aux t) - | Cic.LetIn (name, s, t) -> Cic.LetIn (name, aux s, aux t) - | Cic.Appl terms -> Cic.Appl (List.map aux terms) - | Cic.Const (uri, subst) -> Cic.Const (uri, aux_subst subst) - | Cic.MutInd (uri, tyno, subst) -> Cic.MutInd (uri, tyno, aux_subst subst) + if b then + true,Cic.Meta (i, ctxt) + else + not_found + | Cic.Cast (te, ty) -> + let b1,te = aux te in + let b2,ty = aux ty in + if b1||b2 then true,Cic.Cast (te, ty) + else + not_found + | Cic.Prod (name, s, t) -> + let b1,s = aux s in + let b2,t = aux t in + if b1||b2 then + true, Cic.Prod (name, s, t) + else + not_found + | Cic.Lambda (name, s, t) -> + let b1,s = aux s in + let b2,t = aux t in + if b1||b2 then + true, Cic.Lambda (name, s, t) + else + not_found + | Cic.LetIn (name, s, t) -> + let b1,s = aux s in + let b2,t = aux t in + if b1||b2 then + true, Cic.LetIn (name, s, t) + else + not_found + | Cic.Appl terms -> + let b,terms = + List.fold_right + (fun t (b,terms) -> + let bt,t = aux t in + b||bt,t::terms + ) terms (false,[]) + in + if b then + true,Cic.Appl terms + else + not_found + | Cic.Const (uri, subst) -> + let b,subst = aux_subst subst in + if b then + true, Cic.Const (uri, subst) + else + not_found + | Cic.MutInd (uri, tyno, subst) -> + let b,subst = aux_subst subst in + if b then + true, Cic.MutInd (uri, tyno, subst) + else + not_found | Cic.MutConstruct (uri, tyno, consno, subst) -> - Cic.MutConstruct (uri, tyno, consno, aux_subst subst) + let b,subst = aux_subst subst in + if b then + true, Cic.MutConstruct (uri, tyno, consno, subst) + else + not_found | Cic.MutCase (uri, tyno, outty, t, pat) -> - Cic.MutCase (uri, tyno, aux outty, aux t, List.map aux pat) + let b1,outty = aux outty in + let b2,t = aux t in + let b3,pat = + List.fold_right + (fun t (b,pat) -> + let bt,t = aux t in + bt||b,t::pat + ) pat (false,[]) + in + if b1 || b2 || b3 then + true, Cic.MutCase (uri, tyno, outty, t, pat) + else + not_found | Cic.Fix (funno, funs) -> - let funs = - List.map (fun (name, i, ty, bo) -> (name, i, aux ty, aux bo)) funs + let b,funs = + List.fold_right + (fun (name, i, ty, bo) (b,funs) -> + let b1,ty = aux ty in + let b2,bo = aux bo in + b||b1||b2, (name, i, ty, bo)::funs) funs (false,[]) in - Cic.Fix (funno, funs) + if b then + true, Cic.Fix (funno, funs) + else + not_found | Cic.CoFix (funno, funs) -> - let funs = - List.map (fun (name, ty, bo) -> (name, aux ty, aux bo)) funs + let b,funs = + List.fold_right + (fun (name, ty, bo) (b,funs) -> + let b1,ty = aux ty in + let b2,bo = aux bo in + b||b1||b2, (name, ty, bo)::funs) funs (false,[]) in - Cic.CoFix (funno, funs) + if b then + true, Cic.CoFix (funno, funs) + else + not_found | Cic.Rel _ | Cic.Sort _ - | Cic.Implicit _ -> t + | Cic.Implicit _ -> not_found and aux_subst subst = - List.map (fun (uri, t) -> (uri, aux t)) subst + List.fold_right + (fun (uri, t) (b,subst) -> + let b1,t = aux t in + b||b1,(uri, t)::subst) subst (false,[]) in - aux term + snd (aux term) +exception Fail of string Lazy.t + + (** select metasenv conjecture pattern + * select all subterms of [conjecture] matching [pattern]. + * It returns the set of matched terms (that can be compared using physical + * equality to the subterms of [conjecture]) together with their contexts. + * The representation of the set mimics the ProofEngineTypes.pattern type: + * a list of hypothesis (names of) together with the list of its matched + * subterms (and their contexts) + the list of matched subterms of the + * with their context conclusion. Note: in the result the list of hypothesis + * has an entry for each entry in the context and in the same order. + * Of course the list of terms (with their context) associated to the + * hypothesis name may be empty. + * + * @raise Bad_pattern + * *) + let select ~metasenv ~ugraph ~conjecture:(_,context,ty) + ~pattern:(what,hyp_patterns,goal_pattern) + = + let find_pattern_for name = + try Some (snd (List.find (fun (n, pat) -> Cic.Name n = name) hyp_patterns)) + with Not_found -> None in + let subst,metasenv,ugraph,ty_terms = + select_in_term ~metasenv ~context ~ugraph ~term:ty + ~pattern:(what,goal_pattern) in + let context_len = List.length context in + let subst,metasenv,ugraph,context_terms = + let subst,metasenv,ugraph,res,_ = + (List.fold_right + (fun entry (subst,metasenv,ugraph,res,context) -> + match entry with + None -> subst,metasenv,ugraph,(None::res),(None::context) + | Some (name,Cic.Decl term) -> + (match find_pattern_for name with + | None -> + subst,metasenv,ugraph,((Some (`Decl []))::res),(entry::context) + | Some pat -> + let subst,metasenv,ugraph,terms = + select_in_term ~metasenv ~context ~ugraph ~term + ~pattern:(what,pat) + in + subst,metasenv,ugraph,((Some (`Decl terms))::res), + (entry::context)) + | Some (name,Cic.Def (bo, ty)) -> + (match find_pattern_for name with + | None -> + let selected_ty=match ty with None -> None | Some _ -> Some [] in + subst,metasenv,ugraph,((Some (`Def ([],selected_ty)))::res), + (entry::context) + | Some pat -> + let subst,metasenv,ugraph,terms_bo = + select_in_term ~metasenv ~context ~ugraph ~term:bo + ~pattern:(what,pat) in + let subst,metasenv,ugraph,terms_ty = + match ty with + None -> subst,metasenv,ugraph,None + | Some ty -> + let subst,metasenv,ugraph,res = + select_in_term ~metasenv ~context ~ugraph ~term:ty + ~pattern:(what,pat) + in + subst,metasenv,ugraph,Some res + in + subst,metasenv,ugraph,((Some (`Def (terms_bo,terms_ty)))::res), + (entry::context)) + ) context (subst,metasenv,ugraph,[],[])) + in + subst,metasenv,ugraph,res + in + subst,metasenv,ugraph,context_terms, ty_terms + +(** locate_in_term equality what where context +* [what] must match a subterm of [where] according to [equality] +* It returns the matched terms together with their contexts in [where] +* [equality] defaults to physical equality +* [context] must be the context of [where] +*) +let locate_in_term ?(equality=(fun _ -> (==))) what ~where context = + let add_ctx context name entry = + (Some (name, entry)) :: context in + let rec aux context where = + if equality context what where then [context,where] + else + match where with + | Cic.Implicit _ + | Cic.Meta _ + | Cic.Rel _ + | Cic.Sort _ + | Cic.Var _ + | Cic.Const _ + | Cic.MutInd _ + | Cic.MutConstruct _ -> [] + | Cic.Cast (te, ty) -> aux context te @ aux context ty + | Cic.Prod (name, s, t) + | Cic.Lambda (name, s, t) -> + aux context s @ aux (add_ctx context name (Cic.Decl s)) t + | Cic.LetIn (name, s, t) -> + aux context s @ aux (add_ctx context name (Cic.Def (s,None))) t + | Cic.Appl tl -> auxs context tl + | Cic.MutCase (_, _, out, t, pat) -> + aux context out @ aux context t @ auxs context pat + | Cic.Fix (_, funs) -> + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs + in + List.concat + (List.map + (fun (_, _, ty, bo) -> + aux context ty @ aux (tys @ context) bo) + funs) + | Cic.CoFix (_, funs) -> + let tys = + List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs + in + List.concat + (List.map + (fun (_, ty, bo) -> + aux context ty @ aux (tys @ context) bo) + funs) + and auxs context tl = (* as aux for list of terms *) + List.concat (List.map (fun t -> aux context t) tl) + in + aux context where + +(** locate_in_conjecture equality what where context +* [what] must match a subterm of [where] according to [equality] +* It returns the matched terms together with their contexts in [where] +* [equality] defaults to physical equality +* [context] must be the context of [where] +*) +let locate_in_conjecture ?(equality=fun _ -> (==)) what (_,context,ty) = + let context,res = + List.fold_right + (fun entry (context,res) -> + match entry with + None -> entry::context, res + | Some (_, Cic.Decl ty) -> + let res = res @ locate_in_term what ~where:ty context in + let context' = entry::context in + context',res + | Some (_, Cic.Def (bo,ty)) -> + let res = res @ locate_in_term what ~where:bo context in + let res = + match ty with + None -> res + | Some ty -> + res @ locate_in_term what ~where:ty context in + let context' = entry::context in + context',res + ) context ([],[]) + in + res @ locate_in_term what ~where:ty context + +(* saturate_term newmeta metasenv context ty goal_arity *) +(* Given a type [ty] (a backbone), it returns its suffix of length *) +(* [goal_arity] head and a new metasenv in which there is new a META for each *) +(* hypothesis, a list of arguments for the new applications and the index of *) +(* the last new META introduced. The nth argument in the list of arguments is *) +(* just the nth new META. *) +let saturate_term newmeta metasenv context ty goal_arity = + let module C = Cic in + let module S = CicSubstitution in + assert (goal_arity >= 0); + let rec aux newmeta ty = + match ty with + C.Cast (he,_) -> aux newmeta he +(* CSC: patch to generate ?1 : ?2 : Type in place of ?1 : Type to simulate ?1 :< Type + (* If the expected type is a Type, then also Set is OK ==> + * we accept any term of type Type *) + (*CSC: BUG HERE: in this way it is possible for the term of + * type Type to be different from a Sort!!! *) + | C.Prod (name,(C.Sort (C.Type _) as s),t) -> + (* TASSI: ask CSC if BUG HERE refers to the C.Cast or C.Propd case *) + let irl = + CicMkImplicit.identity_relocation_list_for_metavariable context + in + let newargument = C.Meta (newmeta+1,irl) in + let (res,newmetasenv,arguments,lastmeta) = + aux (newmeta + 2) (S.subst newargument t) + in + res, + (newmeta,[],s)::(newmeta+1,context,C.Meta (newmeta,[]))::newmetasenv, + newargument::arguments,lastmeta +*) + | C.Prod (name,s,t) -> + let irl = + CicMkImplicit.identity_relocation_list_for_metavariable context + in + let newargument = C.Meta (newmeta,irl) in + let res,newmetasenv,arguments,lastmeta,prod_no = + aux (newmeta + 1) (S.subst newargument t) + in + if prod_no + 1 = goal_arity then + let head = CicReduction.normalize ~delta:false context ty in + head,[],[],lastmeta,goal_arity + 1 + else + (** NORMALIZE RATIONALE + * we normalize the target only NOW since we may be in this case: + * A1 -> A2 -> T where T = (\lambda x.A3 -> P) k + * and we want a mesasenv with ?1:A1 and ?2:A2 and not + * ?1, ?2, ?3 (that is the one we whould get if we start from the + * beta-normalized A1 -> A2 -> A3 -> P **) + let s' = CicReduction.normalize ~delta:false context s in + res,(newmeta,context,s')::newmetasenv,newargument::arguments, + lastmeta,prod_no + 1 + | t -> + let head = CicReduction.normalize ~delta:false context t in + match CicReduction.whd context head with + C.Prod _ as head' -> aux newmeta head' + | _ -> head,[],[],newmeta,0 + in + (* WARNING: here we are using the invariant that above the most *) + (* recente new_meta() there are no used metas. *) + let res,newmetasenv,arguments,lastmeta,_ = aux newmeta ty in + res,metasenv @ newmetasenv,arguments,lastmeta + +let lookup_type metasenv context hyp = + let rec aux p = function + | Some (Cic.Name name, Cic.Decl t) :: _ when name = hyp -> p, t + | Some (Cic.Name name, Cic.Def (_, Some t)) :: _ when name = hyp -> p, t + | Some (Cic.Name name, Cic.Def (u, _)) :: tail when name = hyp -> + p, fst (CicTypeChecker.type_of_aux' metasenv tail u CicUniv.empty_ugraph) + | _ :: tail -> aux (succ p) tail + | [] -> raise (ProofEngineTypes.Fail (lazy "lookup_type: not premise in the current goal")) + in + aux 1 context