X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=0edb5c8b041c9e2c5415790bd3a1badfca2ead20;hb=89519c7b52e06304a94019dd528925300380cdc0;hp=8e99a93322fa6075ca339ce36b63f2a439612592;hpb=128ea02422e0cc4254ea3f8e4b0c5248c7182479;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index 8e99a9332..0edb5c8b0 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -38,26 +38,27 @@ module Pp = CicPp module PEH = ProofEngineHelpers module HEL = HExtlib module DTI = DoubleTypeInference +module NU = CicNotationUtil +module L = Librarian module Cl = ProceduralClassify module T = ProceduralTypes module Cn = ProceduralConversion module H = ProceduralHelpers +module X = ProceduralTeX type status = { sorts : (C.id, A.sort_kind) Hashtbl.t; types : (C.id, A.anntypes) Hashtbl.t; - prefix: string; max_depth: int option; depth: int; context: C.context; - clears: string list; - clears_note: string; - case: int list; - skip_thm_and_qed : bool; + case: int list } -let debug = true +let tex_formatter = ref None + +let debug = ref false (* helpers ******************************************************************) @@ -95,7 +96,7 @@ let push st = {st with case = 1 :: st.case} let inc st = {st with case = match st.case with - | [] -> assert false + | [] -> [] | hd :: tl -> succ hd :: tl } @@ -149,12 +150,6 @@ try with Not_found -> `Type (CicUniv.fresh()) with Invalid_argument _ -> failwith "A2P.get_sort" *) -let get_type msg st bo = -try - let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.oblivion_ugraph in - ty -with e -> failwith (msg ^ ": " ^ Printexc.to_string e) - let get_entry st id = let rec aux = function | [] -> assert false @@ -163,19 +158,41 @@ let get_entry st id = in aux st.context -let get_ind_names uri tno = -try - let ts = match E.get_obj Un.oblivion_ugraph uri with - | C.InductiveDefinition (ts, _, _, _), _ -> ts - | _ -> assert false +let string_of_atomic = function + | C.ARel (_, _, _, s) -> s + | C.AVar (_, uri, _) -> H.name_of_uri uri None None + | C.AConst (_, uri, _) -> H.name_of_uri uri None None + | C.AMutInd (_, uri, i, _) -> H.name_of_uri uri (Some i) None + | C.AMutConstruct (_, uri, i, j, _) -> H.name_of_uri uri (Some i) (Some j) + | _ -> "" + +let get_sub_names head l = + let s = string_of_atomic head in + if s = "" then [] else + let map (names, i) _ = + let name = Printf.sprintf "%s_%u" s i in name :: names, succ i in - match List.nth ts tno with - | (_, _, _, cs) -> List.map fst cs -with Invalid_argument _ -> failwith "A2P.get_ind_names" + let names, _ = List.fold_left map ([], 1) l in + List.rev names + +let get_type msg st t = H.get_type msg st.context (H.cic t) + +let clear_absts m = + let rec aux k n = function + | C.ALambda (id, s, v, t) when k > 0 -> + C.ALambda (id, s, v, aux (pred k) n t) + | C.ALambda (_, _, _, t) when n > 0 -> + aux 0 (pred n) (Cn.lift 1 (-1) t) + | t when n > 0 -> + Printf.eprintf "A2P.clear_absts: %u %s\n" n (Pp.ppterm (H.cic t)); + assert false + | t -> t + in + aux m (* proof construction *******************************************************) -let used_premise = C.Name "USED" +let anonymous_premise = C.Name "UNNAMED" let mk_exp_args hd tl classes synth = let meta id = C.AImplicit (id, None) in @@ -194,7 +211,7 @@ let mk_convert st ?name sty ety note = let e = Cn.hole "" in let csty, cety = H.cic sty, H.cic ety in let script = - if debug then + if !debug then let sname = match name with None -> "" | Some (id, _) -> id in let note = Printf.sprintf "%s: %s\nSINTH: %s\nEXP: %s" note sname (Pp.ppterm csty) (Pp.ppterm cety) @@ -202,8 +219,8 @@ let mk_convert st ?name sty ety note = [T.Note note] else [] in - assert (Ut.is_sober csty); - assert (Ut.is_sober cety); + assert (Ut.is_sober st.context csty); + assert (Ut.is_sober st.context cety); if Ut.alpha_equivalence csty cety then script else let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in match name with @@ -218,30 +235,15 @@ let mk_convert st ?name sty ety note = let convert st ?name v = match get_inner_types st v with | None -> - if debug then [T.Note "NORMAL: NO INNER TYPES"] else [] + if !debug then [T.Note "NORMAL: NO INNER TYPES"] else [] | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL" - -let convert_elim st ?name t v pattern = - match t, get_inner_types st t, get_inner_types st v with - | _, None, _ - | _, _, None -> [(* T.Note "ELIM: NO INNER TYPES"*)] - | C.AAppl (_, hd :: tl), Some (tsty, _), Some (vsty, _) -> - let where = List.hd (List.rev tl) in - let cty = Cn.elim_inferred_type - st.context (H.cic vsty) (H.cic where) (H.cic hd) (H.cic pattern) - in - mk_convert st ?name (Cn.fake_annotate "" st.context cty) tsty "ELIM" - | _, Some _, Some _ -> assert false let get_intro = function | C.Anonymous -> None | C.Name s -> Some s let mk_preamble st what script = - let clears st script = - if true (* st.clears = [] *) then script else T.Clear (st.clears, st.clears_note) :: script - in - clears st (convert st what @ script) + convert st what @ script let mk_arg st = function | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what @@ -258,19 +260,21 @@ let mk_fwd_rewrite st dtext name tl direction v t ity = if (Cn.does_not_occur e) then st, [] else match where with | C.ARel (_, _, i, premise) as w -> -(* let _script = convert_elim st ~name:(premise, i) v w e in *) let script name = let where = Some (premise, name) in - let script = mk_arg st what @ mk_arg st w (* @ script *) in + let script = mk_arg st what @ mk_arg st w in T.Rewrite (direction, what, where, e, dtext) :: script in if DTI.does_not_occur (succ i) (H.cic t) || compare premise name then {st with context = Cn.clear st.context premise}, script name - else + else begin + assert (Ut.is_sober st.context (H.cic ity)); + let ity = H.acic_bc st.context ity in let br1 = [T.Id ""] in let br2 = List.rev (T.Apply (w, "assumption") :: script None) in - let text = "non linear rewrite" in + let text = "non-linear rewrite" in st, [T.Branch ([br2; br1], ""); T.Cut (name, ity, text)] + end | _ -> assert false let mk_rewrite st dtext where qs tl direction t = @@ -278,22 +282,13 @@ let mk_rewrite st dtext where qs tl direction t = let predicate = List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in let script = [T.Branch (qs, "")] in - if (Cn.does_not_occur e) then script else -(* let script = convert_elim st t t e in *) + if (Cn.does_not_occur e) then script else T.Rewrite (direction, where, None, e, dtext) :: script let rec proc_lambda st what name v t = - let dno = match get_inner_types st t with - | None -> false - | Some (sty, ety) -> - let sty, ety = H.cic sty, H.cic ety in - DTI.does_not_occur 1 sty && DTI.does_not_occur 1 ety - in - let dno = dno && DTI.does_not_occur 1 (H.cic t) in - let name = match dno, name with - | true, _ -> C.Anonymous - | false, C.Anonymous -> H.mk_fresh_name st.context used_premise - | false, name -> name + let name = match name with + | C.Anonymous -> H.mk_fresh_name st.context anonymous_premise + | name -> name in let entry = Some (name, C.Decl (H.cic v)) in let intro = get_intro name in @@ -313,8 +308,9 @@ and proc_letin st what name v w t = | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> mk_fwd_rewrite st dtext intro tl false v t ity | v -> + assert (Ut.is_sober st.context (H.cic ity)); + let ity = H.acic_bc st.context ity in let qs = [proc_proof (next st) v; [T.Id ""]] in - let ity = H.acic_bc st.context ity in st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] in st, C.Decl (H.cic ity), rqv @@ -348,7 +344,10 @@ and proc_const st what = and proc_appl st what hd tl = let proceed, dtext = test_depth st in let script = if proceed then - let ty = get_type "TC2" st hd in + let ty = match get_inner_types st hd with + | Some (ity, _) -> H.cic ity + | None -> get_type "TC2" st hd + in let classes, rc = Cl.classify st.context ty in let goal_arity, goal = match get_inner_types st what with | None -> 0, None @@ -371,7 +370,7 @@ and proc_appl st what hd tl = let classes2, tl2, _, where = split2_last classes tl in let script2 = List.rev (mk_arg st where) @ script in let synth2 = I.S.add 1 synth in - let names = get_ind_names uri tyno in + let names = H.get_ind_names uri tyno in let qs = proc_bkd_proofs (next st) synth2 names classes2 tl2 in if List.length qs <> List.length names then let qs = proc_bkd_proofs (next st) synth [] classes tl in @@ -385,10 +384,11 @@ and proc_appl st what hd tl = let predicate = List.nth tl2 (parsno - i) in let e = Cn.mk_pattern j predicate in let using = Some hd in - (* convert_elim st what what e @ *) script2 @ + script2 @ [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] | None -> - let qs = proc_bkd_proofs (next st) synth [] classes tl in + let names = get_sub_names hd tl in + let qs = proc_bkd_proofs (next st) synth names classes tl in let hd = mk_exp_args hd tl classes synth in script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] else @@ -396,9 +396,30 @@ and proc_appl st what hd tl = in mk_preamble st what script +and proc_case st what uri tyno u v ts = + let proceed, dtext = test_depth st in + let script = if proceed then + let synth, classes = I.S.empty, Cl.make ts in + let names = H.get_ind_names uri tyno in + let qs = proc_bkd_proofs (next st) synth names classes ts in + let lpsno, _ = H.get_ind_type uri tyno in + let ps, sort_disp = H.get_ind_parameters st.context (H.cic v) in + let _, rps = HEL.split_nth lpsno ps in + let rpsno = List.length rps in + let predicate = clear_absts rpsno (1 - sort_disp) u in + let e = Cn.mk_pattern rpsno predicate in + let text = "" in + let script = List.rev (mk_arg st v) in + script @ [T.Cases (v, e, dtext ^ text); T.Branch (qs, "")] + else + [T.Apply (what, dtext)] + in + mk_preamble st what script + and proc_other st what = + let _, dtext = test_depth st in let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in - let script = [T.Note text] in + let script = [T.Apply (what, dtext ^ text)] in mk_preamble st what script and proc_proof st t = @@ -409,78 +430,121 @@ and proc_proof st t = (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et))) | None -> None, "\nNo types" in - let context, clears = Cn.get_clears st.context (H.cic t) xtypes in - let note = Pp.ppcontext st.context ^ note in - {st with context = context; clears = clears; clears_note = note; } + let context, _clears = Cn.get_clears st.context (H.cic t) xtypes in + {st with context = context} in match t with - | C.ALambda (_, name, w, t) as what -> proc_lambda (f st) what name w t - | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t - | C.ARel _ as what -> proc_rel (f st) what - | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what - | C.AConst _ as what -> proc_const (f st) what - | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl - | what -> proc_other (f st) what + | C.ALambda (_, name, w, t) as what -> proc_lambda (f st) what name w t + | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t + | C.ARel _ as what -> proc_rel (f st) what + | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what + | C.AConst _ as what -> proc_const (f st) what + | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl + | C.AMutCase (_, uri, i, u, v, ts) as what -> proc_case (f st) what uri i u v ts + | what -> proc_other (f st) what and proc_bkd_proofs st synth names classes ts = try - let get_note = - let names = ref (names, push st) in - fun f -> - match !names with - | [], st -> fun _ -> f st - | "" :: tl, st -> names := tl, st; fun _ -> f st - | hd :: tl, st -> - let note = case st hd in - names := tl, inc st; - fun b -> if b then T.Note note :: f st else f st + let get_names b = ref (names, if b then push st else st) in + let get_note f b names = + match !names with + | [], st -> f st + | "" :: tl, st -> names := tl, st; f st + | hd :: tl, st -> + let note = case st hd in + names := tl, inc st; + if b then T.Note note :: f st else f st in let _, dtext = test_depth st in let aux (inv, _) v = if I.overlaps synth inv then None else if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else - Some (fun _ -> [T.Apply (v, dtext ^ "dependent")]) + Some (get_note (fun _ -> [T.Apply (v, dtext ^ "dependent")])) in let ps = T.list_map2_filter aux classes ts in let b = List.length ps > 1 in - List.rev_map (fun f -> f b) ps + let names = get_names b in + List.rev_map (fun f -> f b names) ps with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) (* object costruction *******************************************************) -let is_theorem pars = - pars = [] || - List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || - List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars - -let proc_obj st = function - | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> - let ast = proc_proof st v in - let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in - let text = Printf.sprintf "tactics: %u\nnodes: %u" steps nodes in - if st.skip_thm_and_qed then ast - else T.Theorem (Some s, t, "") :: ast @ [T.Qed text] - | _ -> - failwith "not a theorem" +let th_flavours = [`Theorem; `Lemma; `Remark; `Fact] + +let def_flavours = [`Definition] + +let get_flavour ?flavour attrs = + let rec aux = function + | [] -> List.hd th_flavours + | `Flavour fl :: _ -> fl + | _ :: tl -> aux tl + in + match flavour with + | Some fl -> fl + | None -> aux attrs + +let proc_obj ?flavour ?(info="") st = function + | C.AConstant (_, _, s, Some v, t, [], attrs) -> + begin match get_flavour ?flavour attrs with + | flavour when List.mem flavour th_flavours -> + let ast = proc_proof st v in + let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in + let text = Printf.sprintf "%s\n%s%s: %u\n%s: %u\n%s" + "COMMENTS" info "Tactics" steps "Final nodes" nodes "END" + in + T.Statement (flavour, Some s, t, None, "") :: ast @ [T.Qed text] + | flavour when List.mem flavour def_flavours -> + [T.Statement (flavour, Some s, t, Some v, "")] + | _ -> + failwith "not a theorem, definition, axiom or inductive type" + end + | C.AConstant (_, _, s, None, t, [], attrs) -> + [T.Statement (`Axiom, Some s, t, None, "")] + | C.AInductiveDefinition (_, types, [], lpsno, attrs) -> + [T.Inductive (types, lpsno, "")] + | _ -> + failwith "not a theorem, definition, axiom or inductive type" (* interface functions ******************************************************) -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth -?(skip_thm_and_qed=false) prefix aobj = +let procedural_of_acic_object ~ids_to_inner_sorts ~ids_to_inner_types + ?info ?depth ?flavour prefix anobj = let st = { sorts = ids_to_inner_sorts; types = ids_to_inner_types; - prefix = prefix; max_depth = depth; depth = 0; context = []; - clears = []; - clears_note = ""; - case = []; - skip_thm_and_qed = skip_thm_and_qed; + case = [] + } in + L.time_stamp "P : LEVEL 1 "; + HLog.debug "Procedural: level 1 transformation"; + let steps = proc_obj st ?flavour ?info anobj in + let _ = match !tex_formatter with + | None -> () + | Some frm -> X.tex_of_steps frm st.sorts steps + in + L.time_stamp "P : RENDERING"; + HLog.debug "Procedural: grafite rendering"; + let r = List.rev (T.render_steps [] steps) in + L.time_stamp "P : DONE "; r + +let procedural_of_acic_term ~ids_to_inner_sorts ~ids_to_inner_types ?depth + prefix context annterm = + let st = { + sorts = ids_to_inner_sorts; + types = ids_to_inner_types; + max_depth = depth; + depth = 0; + context = context; + case = [] } in - HLog.debug "Procedural: level 2 transformation"; - let steps = proc_obj st aobj in + HLog.debug "Procedural: level 1 transformation"; + let steps = proc_proof st annterm in + let _ = match !tex_formatter with + | None -> () + | Some frm -> X.tex_of_steps frm st.sorts steps + in HLog.debug "Procedural: grafite rendering"; List.rev (T.render_steps [] steps)