X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=63b4d4972281d0c5f5822cf4555ee54b86ff56ee;hb=HEAD;hp=bbc358f71e7fbc0db2eebce8f7624e393d072877;hpb=8a4fdd910446fb3635719d979613aad2bd56db16;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index bbc358f71..63b4d4972 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -23,364 +23,127 @@ * http://cs.unibo.it/helm/. *) -module C = Cic -module I = CicInspect -module D = Deannotate -module DTI = DoubleTypeInference -module TC = CicTypeChecker -module Un = CicUniv -module UM = UriManager -module Obj = LibraryObjects -module HObj = HelmLibraryObjects -module A = Cic2acic -module Ut = CicUtil -module E = CicEnvironment -module PER = ProofEngineReduction +module C = Cic +module L = Librarian +module G = GrafiteAst -module Cl = ProceduralClassify -module M = ProceduralMode -module T = ProceduralTypes -module Cn = ProceduralConversion +module H = ProceduralHelpers +module T = ProceduralTypes +module P1 = Procedural1 +module P2 = Procedural2 +module X = ProceduralTeX -type status = { - sorts : (C.id, A.sort_kind) Hashtbl.t; - types : (C.id, A.anntypes) Hashtbl.t; - prefix: string; - max_depth: int option; - depth: int; - context: C.context; - intros: string list -} +let tex_formatter = ref None -(* helpers ******************************************************************) - -let identity x = x - -let comp f g x = f (g x) - -let cic = D.deannotate_term - -let split2_last l1 l2 = -try - let n = pred (List.length l1) in - let before1, after1 = T.list_split n l1 in - let before2, after2 = T.list_split n l2 in - before1, before2, List.hd after1, List.hd after2 -with Invalid_argument _ -> failwith "A2P.split2_last" - -let string_of_head = function - | C.ASort _ -> "sort" - | C.AConst _ -> "const" - | C.AMutInd _ -> "mutind" - | C.AMutConstruct _ -> "mutconstruct" - | C.AVar _ -> "var" - | C.ARel _ -> "rel" - | C.AProd _ -> "prod" - | C.ALambda _ -> "lambda" - | C.ALetIn _ -> "letin" - | C.AFix _ -> "fix" - | C.ACoFix _ -> "cofix" - | C.AAppl _ -> "appl" - | C.ACast _ -> "cast" - | C.AMutCase _ -> "mutcase" - | C.AMeta _ -> "meta" - | C.AImplicit _ -> "implict" - -let clear st = {st with intros = []} - -let next st = {(clear st) with depth = succ st.depth} - -let add st entry intro = - {st with context = entry :: st.context; intros = intro :: st.intros} - -let test_depth st = -try - let msg = Printf.sprintf "Depth %u: " st.depth in - match st.max_depth with - | None -> true, "" - | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: " -with Invalid_argument _ -> failwith "A2P.test_depth" - -let is_rewrite_right = function - | C.AConst (_, uri, []) -> - UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri - | _ -> false - -let is_rewrite_left = function - | C.AConst (_, uri, []) -> - UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri - | _ -> false - -let is_fwd_rewrite_right hd tl = - if is_rewrite_right hd then match List.nth tl 3 with - | C.ARel _ -> true - | _ -> false - else false - -let is_fwd_rewrite_left hd tl = - if is_rewrite_left hd then match List.nth tl 3 with - | C.ARel _ -> true - | _ -> false - else false -(* -let get_ind_name uri tno xcno = -try - let ts = match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (ts, _, _,_), _ -> ts - | _ -> assert false - in - let tname, cs = match List.nth ts tno with - | (name, _, _, cs) -> name, cs - in - match xcno with - | None -> tname - | Some cno -> fst (List.nth cs (pred cno)) -with Invalid_argument _ -> failwith "A2P.get_ind_name" -*) -let get_inner_types st v = -try - let id = Ut.id_of_annterm v in - try match Hashtbl.find st.types id with - | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et) - | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st) - with Not_found -> None -with Invalid_argument _ -> failwith "A2P.get_inner_types" - -let get_inner_sort st v = -try - let id = Ut.id_of_annterm v in - try Hashtbl.find st.sorts id - with Not_found -> `Type (CicUniv.fresh()) -with Invalid_argument _ -> failwith "A2P.get_sort" - -(* proof construction *******************************************************) - -let unused_premise = "UNUSED" - -let defined_premise = "DEFINED" +(* object costruction *******************************************************) -let expanded_premise = "EXPANDED" +let th_flavours = [`Theorem; `Lemma; `Remark; `Fact] -let convert st ?name v = - match get_inner_types st v with - | None -> [] - | Some (st, et) -> - let cst, cet = cic st, cic et in - if PER.alpha_equivalence cst cet then [] else - let e = Cn.mk_pattern [] (T.mk_arel 1 "") in - match name with - | None -> [T.Change (st, et, None, e, "")] - | Some id -> [T.Change (st, et, Some (id, id), e, ""); T.ClearBody (id, "")] +let def_flavours = [`Definition; `Variant] -let eta_expand n t = - let id = Ut.id_of_annterm t in - let ty = C.AImplicit ("", None) in - let name i = Printf.sprintf "%s%u" expanded_premise i in - let lambda i t = C.ALambda (id, C.Name (name i), ty, t) in - let arg i n = T.mk_arel (n - i) (name (n - i - 1)) in - let rec aux i f a = - if i >= n then f, a else aux (succ i) (comp f (lambda i)) (arg i n :: a) +let get_flavour sorts params context v attrs = + let rec aux = function + | [] -> + if H.is_acic_proof sorts context v then List.hd th_flavours + else List.hd def_flavours + | `Flavour fl :: _ -> fl + | _ :: tl -> aux tl in - let absts, args = aux 0 identity [] in - match Cn.lift 1 n t with - | C.AAppl (id, ts) -> absts (C.AAppl (id, ts @ args)) - | t -> absts (C.AAppl ("", t :: args)) - -let appl_expand n = function - | C.AAppl (id, ts) -> - let before, after = T.list_split (List.length ts + n) ts in - C.AAppl (id, C.AAppl ("", before) :: after) - | _ -> assert false - -let get_intro name t = -try -match name with - | C.Anonymous -> unused_premise - | C.Name s -> - if DTI.does_not_occur 1 (cic t) then unused_premise else s -with Invalid_argument _ -> failwith "A2P.get_intro" - -let mk_intros st script = -try - if st.intros = [] then script else - let count = List.length st.intros in - T.Intros (Some count, List.rev st.intros, "") :: script -with Invalid_argument _ -> failwith "A2P.mk_intros" - -let rec mk_atomic st dtext what = - if T.is_atomic what then - match what with - | C.ARel (_, _, _, name) -> convert st ~name what, what - | _ -> [], what - else - let name = defined_premise in - let script = convert st ~name what in - script @ mk_fwd_proof st dtext name what, T.mk_arel 0 name - -and mk_fwd_rewrite st dtext name tl direction = - let what, where = List.nth tl 5, List.nth tl 3 in - let rps, predicate = [List.nth tl 4], List.nth tl 2 in - let e = Cn.mk_pattern rps predicate in - match where with - | C.ARel (_, _, _, premise) -> - let script, what = mk_atomic st dtext what in - T.Rewrite (direction, what, Some (premise, name), e, dtext) :: script - | _ -> assert false - -and mk_fwd_proof st dtext name = function - | C.ALetIn (_, n, v, t) -> - let entry = Some (n, C.Def (cic v, None)) in - let intro = get_intro n t in - let qt = mk_fwd_proof (add st entry intro) dtext name t in - let qv = mk_fwd_proof st "" intro v in - List.append qt qv - | C.AAppl (_, hd :: tl) as v -> - if is_fwd_rewrite_right hd tl then mk_fwd_rewrite st dtext name tl true else - if is_fwd_rewrite_left hd tl then mk_fwd_rewrite st dtext name tl false else - let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in - begin match get_inner_types st v with - | Some (ity, _) when M.bkd st.context ty -> - let qs = [[T.Id ""]; mk_proof (next st) v] in - [T.Branch (qs, ""); T.Cut (name, ity, dtext)] - | _ -> - let (classes, rc) as h = Cl.classify st.context ty in - let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - [T.LetIn (name, v, dtext ^ text)] + let flavour_map x y = match x, y with + | None, G.IPAs flavour -> Some flavour + | _ -> x + in + match List.fold_left flavour_map None params with + | Some fl -> fl + | None -> aux attrs + +let rec is_record = function + | [] -> None + | `Class (`Record fields) :: _ -> Some fields + | _ :: tl -> is_record tl + +let proc_obj ?(info="") proc_proof sorts params context = function + | C.AConstant (_, _, s, Some v, t, [], attrs) -> + begin match get_flavour sorts params context v attrs with + | flavour when List.mem flavour th_flavours -> + let ast = proc_proof v in + let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in + let text = + if List.mem G.IPComments params then + Printf.sprintf "%s\n%s%s: %u\n%s: %u\n%s" + "COMMENTS" info "Tactics" steps "Final nodes" nodes "END" + else + "" + in + T.Statement (flavour, Some s, t, None, "") :: ast @ [T.Qed text] + | flavour when List.mem flavour def_flavours -> + [T.Statement (flavour, Some s, t, Some v, "")] + | _ -> + failwith "not a theorem, definition, axiom or inductive type" end - | C.AMutCase (id, uri, tyno, outty, arg, cases) as v -> - begin match Cn.mk_ind st.context id uri tyno outty arg cases with - | None -> [T.LetIn (name, v, dtext)] - | Some v -> mk_fwd_proof st dtext name v + | C.AConstant (_, _, s, None, t, [], attrs) -> + [T.Statement (`Axiom, Some s, t, None, "")] + | C.AInductiveDefinition (_, types, [], lpsno, attrs) -> + begin match is_record attrs with + | None -> [T.Inductive (types, lpsno, "")] + | Some fs -> [T.Record (types, lpsno, fs, "")] end - | C.ACast (_, v, _) -> - mk_fwd_proof st dtext name v - | v -> - match get_inner_types st v with - | Some (ity, _) -> - let qs = [[T.Id ""]; mk_proof (next st) v] in - [T.Branch (qs, ""); T.Cut (name, ity, dtext)] - | _ -> - [T.LetIn (name, v, dtext)] - -and mk_proof st = function - | C.ALambda (_, name, v, t) -> - let entry = Some (name, C.Decl (cic v)) in - let intro = get_intro name t in - mk_proof (add st entry intro) t - | C.ALetIn (_, name, v, t) as what -> - let proceed, dtext = test_depth st in - let script = if proceed then - let entry = Some (name, C.Def (cic v, None)) in - let intro = get_intro name t in - let q = mk_proof (next (add st entry intro)) t in - List.rev_append (mk_fwd_proof st dtext intro v) q - else - [T.Apply (what, dtext)] - in - mk_intros st script - | C.ARel _ as what -> - let _, dtext = test_depth st in - let text = "assumption" in - let script = [T.Apply (what, dtext ^ text)] in - mk_intros st script - | C.AMutConstruct _ as what -> - let _, dtext = test_depth st in - let script = [T.Apply (what, dtext)] in - mk_intros st script - | C.AAppl (_, hd :: tl) as t -> - let proceed, dtext = test_depth st in - let script = if proceed then - let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in - let (classes, rc) as h = Cl.classify st.context ty in - let premises, _ = Cl.split st.context ty in - let decurry = List.length classes - List.length tl in - if decurry < 0 then mk_proof (clear st) (appl_expand decurry t) else - if decurry > 0 then mk_proof (clear st) (eta_expand decurry t) else - let synth = I.S.singleton 0 in - let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - match rc with - | Some (i, j) when i > 1 && i <= List.length classes && M.is_eliminator premises -> - let classes, tl, _, what = split2_last classes tl in - let script, what = mk_atomic st dtext what in - let synth = I.S.add 1 synth in - let qs = mk_bkd_proofs (next st) synth classes tl in - if is_rewrite_right hd then - let rps, predicate = [List.nth tl 4], List.nth tl 2 in - let e = Cn.mk_pattern rps predicate in - List.rev script @ convert st t @ - [T.Rewrite (false, what, None, e, dtext); T.Branch (qs, "")] - else if is_rewrite_left hd then - let rps, predicate = [List.nth tl 4], List.nth tl 2 in - let e = Cn.mk_pattern rps predicate in - List.rev script @ convert st t @ - [T.Rewrite (true, what, None, e, dtext); T.Branch (qs, "")] - else - let using = Some hd in - List.rev script @ convert st t @ - [T.Elim (what, using, dtext ^ text); T.Branch (qs, "")] - | _ -> - let qs = mk_bkd_proofs (next st) synth classes tl in - let script, hd = mk_atomic st dtext hd in - List.rev script @ convert st t @ - [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] - else - [T.Apply (t, dtext)] - in - mk_intros st script - | C.AMutCase (id, uri, tyno, outty, arg, cases) -> - begin match Cn.mk_ind st.context id uri tyno outty arg cases with - | _ (* None *) -> - let text = Printf.sprintf "%s" "UNEXPANDED: mutcase" in - let script = [T.Note text] in - mk_intros st script -(* | Some t -> mk_proof st t *) - end - | C.ACast (_, t, _) -> - mk_proof st t - | t -> - let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in - let script = [T.Note text] in - mk_intros st script - -and mk_bkd_proofs st synth classes ts = -try - let _, dtext = test_depth st in - let aux inv v = - if I.overlaps synth inv then None else - if I.S.is_empty inv then Some (mk_proof st v) else - Some [T.Apply (v, dtext ^ "dependent")] - in - T.list_map2_filter aux classes ts -with Invalid_argument _ -> failwith "A2P.mk_bkd_proofs" - -(* object costruction *******************************************************) - -let is_theorem pars = - List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || - List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars - -let mk_obj st = function - | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> - let ast = mk_proof st v in - let count = T.count_steps 0 ast in - let text = Printf.sprintf "tactics: %u" count in - T.Theorem (s, t, text) :: ast @ [T.Qed ""] - | _ -> - failwith "not a theorem" + | _ -> + failwith "not a theorem, definition, axiom or inductive type" (* interface functions ******************************************************) -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = - let st = { - sorts = ids_to_inner_sorts; - types = ids_to_inner_types; - prefix = prefix; - max_depth = depth; - depth = 0; - context = []; - intros = [] - } in - HLog.debug "Level 2 transformation"; - let steps = mk_obj st aobj in - HLog.debug "grafite rendering"; +let get_proc_proof ~ids_to_inner_sorts ~ids_to_inner_types params context = + let level_map x y = match x, y with + | None, G.IPLevel level -> Some level + | _ -> x + in + match List.fold_left level_map None params with + | None + | Some 2 -> + P2.proc_proof + (P2.init ~ids_to_inner_sorts ~ids_to_inner_types params context) + | Some 1 -> + P1.proc_proof + (P1.init ~ids_to_inner_sorts ~ids_to_inner_types params context) + | Some n -> + failwith ( + "Procedural reconstruction level not supported: " ^ + string_of_int n + ) + +let procedural_of_acic_object ~ids_to_inner_sorts ~ids_to_inner_types + ?info params anobj = + let proc_proof = + get_proc_proof ~ids_to_inner_sorts ~ids_to_inner_types params [] + in + L.time_stamp "P : LEVEL 2 "; + HLog.debug "Procedural: level 2 transformation"; + let steps = proc_obj ?info proc_proof ids_to_inner_sorts params [] anobj in + let _ = match !tex_formatter with + | None -> () + | Some frm -> X.tex_of_steps frm ids_to_inner_sorts steps + in + L.time_stamp "P : RENDERING"; + HLog.debug "Procedural: grafite rendering"; + let r = List.rev (T.render_steps [] steps) in + L.time_stamp "P : DONE "; r + +let procedural_of_acic_term ~ids_to_inner_sorts ~ids_to_inner_types params + context annterm = + let proc_proof = + get_proc_proof ~ids_to_inner_sorts ~ids_to_inner_types params context + in + HLog.debug "Procedural: level 2 transformation"; + let steps = proc_proof annterm in + let _ = match !tex_formatter with + | None -> () + | Some frm -> X.tex_of_steps frm ids_to_inner_sorts steps + in + HLog.debug "Procedural: grafite rendering"; List.rev (T.render_steps [] steps) + +let rec is_debug n = function + | [] -> false + | G.IPDebug debug :: _ -> n <= debug + | _ :: tl -> is_debug n tl