X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=63b4d4972281d0c5f5822cf4555ee54b86ff56ee;hb=HEAD;hp=c004fd346b4e2a9ff30714fa3cf84af50a5acf00;hpb=6ba374cbb94797e58cd997c5b41099dd9f679a57;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index c004fd346..63b4d4972 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -23,440 +23,127 @@ * http://cs.unibo.it/helm/. *) -module C = Cic -module I = CicInspect -module S = CicSubstitution -module TC = CicTypeChecker -module Un = CicUniv -module UM = UriManager -module Obj = LibraryObjects -module HObj = HelmLibraryObjects -module A = Cic2acic -module Ut = CicUtil -module E = CicEnvironment -module Pp = CicPp -module PEH = ProofEngineHelpers -module HEL = HExtlib -module DTI = DoubleTypeInference +module C = Cic +module L = Librarian +module G = GrafiteAst -module Cl = ProceduralClassify -module T = ProceduralTypes -module Cn = ProceduralConversion -module H = ProceduralHelpers +module H = ProceduralHelpers +module T = ProceduralTypes +module P1 = Procedural1 +module P2 = Procedural2 +module X = ProceduralTeX -type status = { - sorts : (C.id, A.sort_kind) Hashtbl.t; - types : (C.id, A.anntypes) Hashtbl.t; - prefix: string; - max_depth: int option; - depth: int; - context: C.context; - intros: string option list; - clears: string list; - clears_note: string; - case: int list; - skip_thm_and_qed : bool; -} +let tex_formatter = ref None -(* helpers ******************************************************************) - -let split2_last l1 l2 = -try - let n = pred (List.length l1) in - let before1, after1 = HEL.split_nth n l1 in - let before2, after2 = HEL.split_nth n l2 in - before1, before2, List.hd after1, List.hd after2 -with Invalid_argument _ -> failwith "A2P.split2_last" - -let string_of_head = function - | C.ASort _ -> "sort" - | C.AConst _ -> "const" - | C.AMutInd _ -> "mutind" - | C.AMutConstruct _ -> "mutconstruct" - | C.AVar _ -> "var" - | C.ARel _ -> "rel" - | C.AProd _ -> "prod" - | C.ALambda _ -> "lambda" - | C.ALetIn _ -> "letin" - | C.AFix _ -> "fix" - | C.ACoFix _ -> "cofix" - | C.AAppl _ -> "appl" - | C.ACast _ -> "cast" - | C.AMutCase _ -> "mutcase" - | C.AMeta _ -> "meta" - | C.AImplicit _ -> "implict" - -let clear st = {st with intros = []} - -let next st = {(clear st) with depth = succ st.depth} - -let add st entry intro = - {st with context = entry :: st.context; intros = intro :: st.intros} - -let push st = {st with case = 1 :: st.case} - -let inc st = - {st with case = match st.case with - | [] -> assert false - | hd :: tl -> succ hd :: tl - } - -let case st str = - let case = String.concat "." (List.rev_map string_of_int st.case) in - Printf.sprintf "case %s: %s" case str - -let test_depth st = -try - let msg = Printf.sprintf "Depth %u: " st.depth in - match st.max_depth with - | None -> true, "" - | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: " -with Invalid_argument _ -> failwith "A2P.test_depth" - -let is_rewrite_right = function - | C.AConst (_, uri, []) -> - UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri - | _ -> false - -let is_rewrite_left = function - | C.AConst (_, uri, []) -> - UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri - | _ -> false - -let is_fwd_rewrite_right hd tl = - if is_rewrite_right hd then match List.nth tl 3 with - | C.ARel _ -> true - | _ -> false - else false - -let is_fwd_rewrite_left hd tl = - if is_rewrite_left hd then match List.nth tl 3 with - | C.ARel _ -> true - | _ -> false - else false - -let get_inner_types st v = -try - let id = Ut.id_of_annterm v in - try match Hashtbl.find st.types id with - | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et) - | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st) - with Not_found -> None -with Invalid_argument _ -> failwith "A2P.get_inner_types" -(* -let get_inner_sort st v = -try - let id = Ut.id_of_annterm v in - try Hashtbl.find st.sorts id - with Not_found -> `Type (CicUniv.fresh()) -with Invalid_argument _ -> failwith "A2P.get_sort" -*) -let get_type msg st bo = -try - let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.empty_ugraph in - ty -with e -> failwith (msg ^ ": " ^ Printexc.to_string e) - -let get_entry st id = - let rec aux = function - | [] -> assert false - | Some (C.Name name, e) :: _ when name = id -> e - | _ :: tl -> aux tl - in - aux st.context - -let get_ind_names uri tno = -try - let ts = match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (ts, _, _, _), _ -> ts - | _ -> assert false - in - match List.nth ts tno with - | (_, _, _, cs) -> List.map fst cs -with Invalid_argument _ -> failwith "A2P.get_ind_names" +(* object costruction *******************************************************) -(* proof construction *******************************************************) +let th_flavours = [`Theorem; `Lemma; `Remark; `Fact] -let used_premise = C.Name "USED" +let def_flavours = [`Definition; `Variant] -let mk_exp_args hd tl classes synth = - let meta id = C.AImplicit (id, None) in - let map v (cl, b) = - if I.overlaps synth cl && b then v else meta "" - in +let get_flavour sorts params context v attrs = let rec aux = function - | [] -> [] - | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl) - in - let args = T.list_rev_map2 map tl classes in - let args = aux args in - if args = [] then hd else C.AAppl ("", hd :: args) - -let mk_convert st ?name sty ety note = - let e = Cn.hole "" in - let csty, cety = H.cic sty, H.cic ety in - let _note = Printf.sprintf "%s\nSINTH: %s\nEXP: %s" - note (Pp.ppterm csty) (Pp.ppterm cety) - in - assert (Ut.is_sober csty); - assert (Ut.is_sober cety); - if Ut.alpha_equivalence csty cety then [(* T.Note note *)] else - let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in - match name with - | None -> [T.Change (sty, ety, None, e, ""(*note*))] - | Some (id, i) -> - begin match get_entry st id with - | C.Def _ -> assert false (* [T.ClearBody (id, note)] *) - | C.Decl _ -> [T.Change (ety, sty, Some (id, Some id), e, "" (* note *))] - end - -let convert st ?name v = - match get_inner_types st v with - | None -> [(*T.Note "NORMAL: NO INNER TYPES"*)] - | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL" - -let convert_elim st ?name t v pattern = - match t, get_inner_types st t, get_inner_types st v with - | _, None, _ - | _, _, None -> [(* T.Note "ELIM: NO INNER TYPES"*)] - | C.AAppl (_, hd :: tl), Some (tsty, _), Some (vsty, _) -> - let where = List.hd (List.rev tl) in - let cty = Cn.elim_inferred_type - st.context (H.cic vsty) (H.cic where) (H.cic hd) (H.cic pattern) - in - mk_convert st ?name (Cn.fake_annotate "" st.context cty) tsty "ELIM" - | _, Some _, Some _ -> assert false - -let get_intro = function - | C.Anonymous -> None - | C.Name s -> Some s - -let mk_intros st what script = - let intros st script = - if st.intros = [] then script else - let count = List.length st.intros in - T.Intros (Some count, List.rev st.intros, "") :: script - in - let clears st script = - if true (* st.clears = [] *) then script else T.Clear (st.clears, st.clears_note) :: script + | [] -> + if H.is_acic_proof sorts context v then List.hd th_flavours + else List.hd def_flavours + | `Flavour fl :: _ -> fl + | _ :: tl -> aux tl in - intros st (clears st (convert st what @ script)) - -let mk_arg st = function - | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what - | _ -> [] - -let mk_fwd_rewrite st dtext name tl direction t = - assert (List.length tl = 6); - let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in - let e = Cn.mk_pattern 1 predicate in - match where with - | C.ARel (_, _, i, premise) as v -> - let where = Some (premise, name) in -(* let _script = convert_elim st ~name:(premise, i) t v e in *) - let script = mk_arg st what @ mk_arg st v (* @ script *) in - let st = {st with context = Cn.clear st.context premise} in - st, T.Rewrite (direction, what, where, e, dtext) :: script - | _ -> assert false - -let mk_rewrite st dtext where qs tl direction t = - assert (List.length tl = 5); - let predicate = List.nth tl 2 in - let e = Cn.mk_pattern 1 predicate in - let script = [] (* convert_elim st t t e *) in - script @ [T.Rewrite (direction, where, None, e, dtext); T.Branch (qs, "")] - -let rec proc_lambda st name v t = - let dno = DTI.does_not_occur 1 (H.cic t) in - let dno = dno && match get_inner_types st t with - | None -> false - | Some (it, et) -> - DTI.does_not_occur 1 (H.cic it) && DTI.does_not_occur 1 (H.cic et) - in - let name = match dno, name with - | true, _ -> C.Anonymous - | false, C.Anonymous -> H.mk_fresh_name st.context used_premise - | false, name -> name - in - let entry = Some (name, C.Decl (H.cic v)) in - let intro = get_intro name in - proc_proof (add st entry intro) t - -and proc_letin st what name v w t = - let intro = get_intro name in - let proceed, dtext = test_depth st in - let script = if proceed then - let st, hyp, rqv = match get_inner_types st v with - | Some (ity, _) -> - let st, rqv = match v with - | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl -> - mk_fwd_rewrite st dtext intro tl true v - | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> - mk_fwd_rewrite st dtext intro tl false v - | v -> - let qs = [proc_proof (next st) v; [T.Id ""]] in - let ity = H.acic_bc st.context ity in - st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] + let flavour_map x y = match x, y with + | None, G.IPAs flavour -> Some flavour + | _ -> x + in + match List.fold_left flavour_map None params with + | Some fl -> fl + | None -> aux attrs + +let rec is_record = function + | [] -> None + | `Class (`Record fields) :: _ -> Some fields + | _ :: tl -> is_record tl + +let proc_obj ?(info="") proc_proof sorts params context = function + | C.AConstant (_, _, s, Some v, t, [], attrs) -> + begin match get_flavour sorts params context v attrs with + | flavour when List.mem flavour th_flavours -> + let ast = proc_proof v in + let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in + let text = + if List.mem G.IPComments params then + Printf.sprintf "%s\n%s%s: %u\n%s: %u\n%s" + "COMMENTS" info "Tactics" steps "Final nodes" nodes "END" + else + "" in - st, C.Decl (H.cic ity), rqv - | None -> - st, C.Def (H.cic v, H.cic w), [T.LetIn (intro, v, dtext)] - in - let entry = Some (name, hyp) in - let qt = proc_proof (next (add st entry intro)) t in - List.rev_append rqv qt - else - [T.Apply (what, dtext)] - in - mk_intros st what script - -and proc_rel st what = - let _, dtext = test_depth st in - let text = "assumption" in - let script = [T.Apply (what, dtext ^ text)] in - mk_intros st what script - -and proc_mutconstruct st what = - let _, dtext = test_depth st in - let script = [T.Apply (what, dtext)] in - mk_intros st what script - -and proc_const st what = - let _, dtext = test_depth st in - let script = [T.Apply (what, dtext)] in - mk_intros st what script - -and proc_appl st what hd tl = - let proceed, dtext = test_depth st in - let script = if proceed then - let ty = get_type "TC2" st hd in - let classes, rc = Cl.classify st.context ty in - let goal_arity = match get_inner_types st what with - | None -> 0 - | Some (ity, _) -> snd (PEH.split_with_whd (st.context, H.cic ity)) - in - let parsno, argsno = List.length classes, List.length tl in - let decurry = parsno - argsno in - let diff = goal_arity - decurry in - if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd))); - let rec mk_synth a n = - if n < 0 then a else mk_synth (I.S.add n a) (pred n) - in - let synth = mk_synth I.S.empty decurry in - let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in - let script = List.rev (mk_arg st hd) in - match rc with - | Some (i, j, uri, tyno) -> - let classes, tl, _, where = split2_last classes tl in - let script = List.rev (mk_arg st where) @ script in - let synth = I.S.add 1 synth in - let names = get_ind_names uri tyno in - let qs = proc_bkd_proofs (next st) synth names classes tl in - if is_rewrite_right hd then - script @ mk_rewrite st dtext where qs tl false what - else if is_rewrite_left hd then - script @ mk_rewrite st dtext where qs tl true what - else - let predicate = List.nth tl (parsno - i) in - let e = Cn.mk_pattern j predicate in - let using = Some hd in - (* convert_elim st what what e @ *) script @ - [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] - | None -> - let qs = proc_bkd_proofs (next st) synth [] classes tl in - let hd = mk_exp_args hd tl classes synth in - script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] - else - [T.Apply (what, dtext)] - in - mk_intros st what script + T.Statement (flavour, Some s, t, None, "") :: ast @ [T.Qed text] + | flavour when List.mem flavour def_flavours -> + [T.Statement (flavour, Some s, t, Some v, "")] + | _ -> + failwith "not a theorem, definition, axiom or inductive type" + end + | C.AConstant (_, _, s, None, t, [], attrs) -> + [T.Statement (`Axiom, Some s, t, None, "")] + | C.AInductiveDefinition (_, types, [], lpsno, attrs) -> + begin match is_record attrs with + | None -> [T.Inductive (types, lpsno, "")] + | Some fs -> [T.Record (types, lpsno, fs, "")] + end + | _ -> + failwith "not a theorem, definition, axiom or inductive type" -and proc_other st what = - let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in - let script = [T.Note text] in - mk_intros st what script +(* interface functions ******************************************************) -and proc_proof st t = - let f st = - let xtypes, note = match get_inner_types st t with - | Some (it, et) -> Some (H.cic it, H.cic et), - (Printf.sprintf "\nInferred: %s\nExpected: %s" - (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et))) - | None -> None, "\nNo types" - in - let context, clears = Cn.get_clears st.context (H.cic t) xtypes in - let note = Pp.ppcontext st.context ^ note in - {st with context = context; clears = clears; clears_note = note; } +let get_proc_proof ~ids_to_inner_sorts ~ids_to_inner_types params context = + let level_map x y = match x, y with + | None, G.IPLevel level -> Some level + | _ -> x + in + match List.fold_left level_map None params with + | None + | Some 2 -> + P2.proc_proof + (P2.init ~ids_to_inner_sorts ~ids_to_inner_types params context) + | Some 1 -> + P1.proc_proof + (P1.init ~ids_to_inner_sorts ~ids_to_inner_types params context) + | Some n -> + failwith ( + "Procedural reconstruction level not supported: " ^ + string_of_int n + ) + +let procedural_of_acic_object ~ids_to_inner_sorts ~ids_to_inner_types + ?info params anobj = + let proc_proof = + get_proc_proof ~ids_to_inner_sorts ~ids_to_inner_types params [] + in + L.time_stamp "P : LEVEL 2 "; + HLog.debug "Procedural: level 2 transformation"; + let steps = proc_obj ?info proc_proof ids_to_inner_sorts params [] anobj in + let _ = match !tex_formatter with + | None -> () + | Some frm -> X.tex_of_steps frm ids_to_inner_sorts steps in - match t with - | C.ALambda (_, name, w, t) -> proc_lambda st name w t - | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t - | C.ARel _ as what -> proc_rel (f st) what - | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what - | C.AConst _ as what -> proc_const (f st) what - | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl - | what -> proc_other (f st) what + L.time_stamp "P : RENDERING"; + HLog.debug "Procedural: grafite rendering"; + let r = List.rev (T.render_steps [] steps) in + L.time_stamp "P : DONE "; r -and proc_bkd_proofs st synth names classes ts = -try - let get_note = - let names = ref (names, push st) in - fun f -> - match !names with - | [], st -> fun _ -> f st - | "" :: tl, st -> names := tl, st; fun _ -> f st - | hd :: tl, st -> - let note = case st hd in - names := tl, inc st; - fun b -> if b then T.Note note :: f st else f st +let procedural_of_acic_term ~ids_to_inner_sorts ~ids_to_inner_types params + context annterm = + let proc_proof = + get_proc_proof ~ids_to_inner_sorts ~ids_to_inner_types params context in - let _, dtext = test_depth st in - let aux (inv, _) v = - if I.overlaps synth inv then None else - if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else - Some (fun _ -> [T.Apply (v, dtext ^ "dependent")]) - in - let ps = T.list_map2_filter aux classes ts in - let b = List.length ps > 1 in - List.rev_map (fun f -> f b) ps - -with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) - -(* object costruction *******************************************************) - -let is_theorem pars = - pars = [] || - List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || - List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars - -let proc_obj st = function - | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> - let ast = proc_proof st v in - let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in - let text = Printf.sprintf "tactics: %u\nnodes: %u" steps nodes in - if st.skip_thm_and_qed then ast - else T.Theorem (Some s, t, "") :: ast @ [T.Qed text] - | _ -> - failwith "not a theorem" - -(* interface functions ******************************************************) - -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth -?(skip_thm_and_qed=false) prefix aobj = - let st = { - sorts = ids_to_inner_sorts; - types = ids_to_inner_types; - prefix = prefix; - max_depth = depth; - depth = 0; - context = []; - intros = []; - clears = []; - clears_note = ""; - case = []; - skip_thm_and_qed = skip_thm_and_qed; - } in HLog.debug "Procedural: level 2 transformation"; - let steps = proc_obj st aobj in + let steps = proc_proof annterm in + let _ = match !tex_formatter with + | None -> () + | Some frm -> X.tex_of_steps frm ids_to_inner_sorts steps + in HLog.debug "Procedural: grafite rendering"; List.rev (T.render_steps [] steps) + +let rec is_debug n = function + | [] -> false + | G.IPDebug debug :: _ -> n <= debug + | _ :: tl -> is_debug n tl