X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=a6e0667b05de904d64209c177889ea06b3f37daa;hb=186c1171d37f5d1cde9bb6f38a863be16debf3f0;hp=3ee088696db48a6bc58eb67372214132f5df906c;hpb=2921483dad22e14c2e697cbe5597a0b32af04090;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index 3ee088696..a6e0667b0 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -51,12 +51,14 @@ type status = { max_depth: int option; depth: int; context: C.context; - intros: string option list; clears: string list; clears_note: string; - case: int list + case: int list; + skip_thm_and_qed : bool; } +let debug = true + (* helpers ******************************************************************) let split2_last l1 l2 = @@ -85,12 +87,9 @@ let string_of_head = function | C.AMeta _ -> "meta" | C.AImplicit _ -> "implict" -let clear st = {st with intros = []} - -let next st = {(clear st) with depth = succ st.depth} +let next st = {st with depth = succ st.depth} -let add st entry intro = - {st with context = entry :: st.context; intros = intro :: st.intros} +let add st entry = {st with context = entry :: st.context} let push st = {st with case = 1 :: st.case} @@ -152,7 +151,7 @@ with Invalid_argument _ -> failwith "A2P.get_sort" *) let get_type msg st bo = try - let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.empty_ugraph in + let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.oblivion_ugraph in ty with e -> failwith (msg ^ ": " ^ Printexc.to_string e) @@ -166,7 +165,7 @@ let get_entry st id = let get_ind_names uri tno = try - let ts = match E.get_obj Un.empty_ugraph uri with + let ts = match E.get_obj Un.oblivion_ugraph uri with | C.InductiveDefinition (ts, _, _, _), _ -> ts | _ -> assert false in @@ -176,7 +175,7 @@ with Invalid_argument _ -> failwith "A2P.get_ind_names" (* proof construction *******************************************************) -let used_premise = C.Name "USED" +let anonymous_premise = C.Name "PREMISE" let mk_exp_args hd tl classes synth = let meta id = C.AImplicit (id, None) in @@ -191,80 +190,113 @@ let mk_exp_args hd tl classes synth = let args = aux args in if args = [] then hd else C.AAppl ("", hd :: args) +let mk_convert st ?name sty ety note = + let e = Cn.hole "" in + let csty, cety = H.cic sty, H.cic ety in + let script = + if debug then + let sname = match name with None -> "" | Some (id, _) -> id in + let note = Printf.sprintf "%s: %s\nSINTH: %s\nEXP: %s" + note sname (Pp.ppterm csty) (Pp.ppterm cety) + in + [T.Note note] + else [] + in + assert (Ut.is_sober st.context csty); + assert (Ut.is_sober st.context cety); + if Ut.alpha_equivalence csty cety then script else + let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in + match name with + | None -> T.Change (sty, ety, None, e, "") :: script + | Some (id, i) -> + begin match get_entry st id with + | C.Def _ -> assert false (* T.ClearBody (id, "") :: script *) + | C.Decl _ -> + T.Change (ety, sty, Some (id, Some id), e, "") :: script + end + let convert st ?name v = match get_inner_types st v with - | None -> [] - | Some (sty, ety) -> - let e = Cn.hole "" in - let csty, cety = H.cic sty, H.cic ety in - if Ut.alpha_equivalence csty cety then [] else - match name with - | None -> [T.Change (sty, ety, None, e, "")] - | Some (id, i) -> - begin match get_entry st id with - | C.Def _ -> [T.ClearBody (id, "")] - | C.Decl w -> - let w = S.lift i w in - if Ut.alpha_equivalence csty w then [] - else - [T.Note (Pp.ppterm csty); T.Note (Pp.ppterm w); - T.Change (sty, ety, Some (id, Some id), e, "")] - end - + | None -> + if debug then [T.Note "NORMAL: NO INNER TYPES"] else [] + | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL" + +let convert_elim st ?name t v pattern = + match t, get_inner_types st t, get_inner_types st v with + | _, None, _ + | _, _, None -> [(* T.Note "ELIM: NO INNER TYPES"*)] + | C.AAppl (_, hd :: tl), Some (tsty, _), Some (vsty, _) -> + let where = List.hd (List.rev tl) in + let cty = Cn.elim_inferred_type + st.context (H.cic vsty) (H.cic where) (H.cic hd) (H.cic pattern) + in + mk_convert st ?name (Cn.fake_annotate "" st.context cty) tsty "ELIM" + | _, Some _, Some _ -> assert false + let get_intro = function | C.Anonymous -> None | C.Name s -> Some s -let mk_intros st what script = - let intros st script = - if st.intros = [] then script else - let count = List.length st.intros in - T.Intros (Some count, List.rev st.intros, "") :: script - in +let mk_preamble st what script = let clears st script = if true (* st.clears = [] *) then script else T.Clear (st.clears, st.clears_note) :: script in - intros st (clears st (convert st what @ script)) + clears st (convert st what @ script) let mk_arg st = function | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what | _ -> [] -let mk_fwd_rewrite st dtext name tl direction = +let mk_fwd_rewrite st dtext name tl direction v t ity = + let compare premise = function + | None -> true + | Some s -> s = premise + in assert (List.length tl = 6); let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in + if (Cn.does_not_occur e) then st, [] else match where with - | C.ARel (_, _, _, premise) -> - let script = mk_arg st what in - let where = Some (premise, name) in - let st = {st with context = Cn.clear st.context premise} in - st, T.Rewrite (direction, what, where, e, dtext) :: script + | C.ARel (_, _, i, premise) as w -> +(* let _script = convert_elim st ~name:(premise, i) v w e in *) + let script name = + let where = Some (premise, name) in + let script = mk_arg st what @ mk_arg st w (* @ script *) in + T.Rewrite (direction, what, where, e, dtext) :: script + in + if DTI.does_not_occur (succ i) (H.cic t) || compare premise name then + {st with context = Cn.clear st.context premise}, script name + else begin + assert (Ut.is_sober st.context (H.cic ity)); + let ity = H.acic_bc st.context ity in + let br1 = [T.Id ""] in + let br2 = List.rev (T.Apply (w, "assumption") :: script None) in + let text = "non linear rewrite" in + st, [T.Branch ([br2; br1], ""); T.Cut (name, ity, text)] + end | _ -> assert false -let mk_rewrite st dtext what qs tl direction = +let mk_rewrite st dtext where qs tl direction t = assert (List.length tl = 5); let predicate = List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in - [T.Rewrite (direction, what, None, e, dtext); T.Branch (qs, "")] - -let rec proc_lambda st name v t = - let dno = DTI.does_not_occur 1 (H.cic t) in - let dno = dno && match get_inner_types st t with - | None -> true - | Some (it, et) -> - DTI.does_not_occur 1 (H.cic it) && DTI.does_not_occur 1 (H.cic et) - in - let name = match dno, name with - | true, _ -> C.Anonymous - | false, C.Anonymous -> H.mk_fresh_name st.context used_premise - | false, name -> name + let script = [T.Branch (qs, "")] in + if (Cn.does_not_occur e) then script else +(* let script = convert_elim st t t e in *) + T.Rewrite (direction, where, None, e, dtext) :: script + +let rec proc_lambda st what name v t = + let name = match name with + | C.Anonymous -> H.mk_fresh_name st.context anonymous_premise + | name -> name in let entry = Some (name, C.Decl (H.cic v)) in let intro = get_intro name in - proc_proof (add st entry intro) t + let script = proc_proof (add st entry) t in + let script = T.Intros (Some 1, [intro], "") :: script in + mk_preamble st what script -and proc_letin st what name v t = +and proc_letin st what name v w t = let intro = get_intro name in let proceed, dtext = test_depth st in let script = if proceed then @@ -272,49 +304,58 @@ and proc_letin st what name v t = | Some (ity, _) -> let st, rqv = match v with | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl -> - mk_fwd_rewrite st dtext intro tl true + mk_fwd_rewrite st dtext intro tl true v t ity | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> - mk_fwd_rewrite st dtext intro tl false + mk_fwd_rewrite st dtext intro tl false v t ity | v -> + assert (Ut.is_sober st.context (H.cic ity)); + let ity = H.acic_bc st.context ity in let qs = [proc_proof (next st) v; [T.Id ""]] in - st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] + st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] in st, C.Decl (H.cic ity), rqv | None -> - st, C.Def (H.cic v, None), [T.LetIn (intro, v, dtext)] + st, C.Def (H.cic v, H.cic w), [T.LetIn (intro, v, dtext)] in let entry = Some (name, hyp) in - let qt = proc_proof (next (add st entry intro)) t in + let qt = proc_proof (next (add st entry)) t in List.rev_append rqv qt else [T.Apply (what, dtext)] in - mk_intros st what script + mk_preamble st what script and proc_rel st what = let _, dtext = test_depth st in let text = "assumption" in let script = [T.Apply (what, dtext ^ text)] in - mk_intros st what script + mk_preamble st what script and proc_mutconstruct st what = let _, dtext = test_depth st in let script = [T.Apply (what, dtext)] in - mk_intros st what script + mk_preamble st what script + +and proc_const st what = + let _, dtext = test_depth st in + let script = [T.Apply (what, dtext)] in + mk_preamble st what script and proc_appl st what hd tl = let proceed, dtext = test_depth st in let script = if proceed then let ty = get_type "TC2" st hd in let classes, rc = Cl.classify st.context ty in - let goal_arity = match get_inner_types st what with - | None -> 0 - | Some (ity, _) -> snd (PEH.split_with_whd (st.context, H.cic ity)) + let goal_arity, goal = match get_inner_types st what with + | None -> 0, None + | Some (ity, ety) -> + snd (PEH.split_with_whd (st.context, H.cic ity)), Some (H.cic ety) in let parsno, argsno = List.length classes, List.length tl in let decurry = parsno - argsno in let diff = goal_arity - decurry in if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd))); + let classes = Cl.adjust st.context tl ?goal classes in let rec mk_synth a n = if n < 0 then a else mk_synth (I.S.add n a) (pred n) in @@ -323,20 +364,24 @@ and proc_appl st what hd tl = let script = List.rev (mk_arg st hd) in match rc with | Some (i, j, uri, tyno) -> - let classes, tl, _, where = split2_last classes tl in - let script = List.rev (mk_arg st where) @ script in - let synth = I.S.add 1 synth in + let classes2, tl2, _, where = split2_last classes tl in + let script2 = List.rev (mk_arg st where) @ script in + let synth2 = I.S.add 1 synth in let names = get_ind_names uri tyno in - let qs = proc_bkd_proofs (next st) synth names classes tl in - if is_rewrite_right hd then - script @ mk_rewrite st dtext where qs tl false + let qs = proc_bkd_proofs (next st) synth2 names classes2 tl2 in + if List.length qs <> List.length names then + let qs = proc_bkd_proofs (next st) synth [] classes tl in + let hd = mk_exp_args hd tl classes synth in + script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] + else if is_rewrite_right hd then + script2 @ mk_rewrite st dtext where qs tl2 false what else if is_rewrite_left hd then - script @ mk_rewrite st dtext where qs tl true + script2 @ mk_rewrite st dtext where qs tl2 true what else - let predicate = List.nth tl (parsno - i) in + let predicate = List.nth tl2 (parsno - i) in let e = Cn.mk_pattern j predicate in let using = Some hd in - script @ + (* convert_elim st what what e @ *) script2 @ [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] | None -> let qs = proc_bkd_proofs (next st) synth [] classes tl in @@ -345,12 +390,12 @@ and proc_appl st what hd tl = else [T.Apply (what, dtext)] in - mk_intros st what script + mk_preamble st what script and proc_other st what = let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in let script = [T.Note text] in - mk_intros st what script + mk_preamble st what script and proc_proof st t = let f st = @@ -362,15 +407,16 @@ and proc_proof st t = in let context, clears = Cn.get_clears st.context (H.cic t) xtypes in let note = Pp.ppcontext st.context ^ note in - {st with context = context; clears = clears; clears_note = note} + {st with context = context; clears = clears; clears_note = note; } in match t with - | C.ALambda (_, name, w, t) -> proc_lambda st name w t - | C.ALetIn (_, name, v, t) as what -> proc_letin (f st) what name v t - | C.ARel _ as what -> proc_rel (f st) what - | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what - | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl - | what -> proc_other (f st) what + | C.ALambda (_, name, w, t) as what -> proc_lambda (f st) what name w t + | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t + | C.ARel _ as what -> proc_rel (f st) what + | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what + | C.AConst _ as what -> proc_const (f st) what + | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl + | what -> proc_other (f st) what and proc_bkd_proofs st synth names classes ts = try @@ -399,7 +445,8 @@ with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) (* object costruction *******************************************************) -let is_theorem pars = +let is_theorem pars = + pars = [] || List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars @@ -408,13 +455,15 @@ let proc_obj st = function let ast = proc_proof st v in let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in let text = Printf.sprintf "tactics: %u\nnodes: %u" steps nodes in - T.Theorem (Some s, t, "") :: ast @ [T.Qed text] + if st.skip_thm_and_qed then ast + else T.Theorem (Some s, t, "") :: ast @ [T.Qed text] | _ -> failwith "not a theorem" (* interface functions ******************************************************) -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = +let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth +?(skip_thm_and_qed=false) prefix aobj = let st = { sorts = ids_to_inner_sorts; types = ids_to_inner_types; @@ -422,10 +471,10 @@ let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = max_depth = depth; depth = 0; context = []; - intros = []; clears = []; clears_note = ""; - case = [] + case = []; + skip_thm_and_qed = skip_thm_and_qed; } in HLog.debug "Procedural: level 2 transformation"; let steps = proc_obj st aobj in