X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=ae64d1f19af4c904e804cd3dd3fd48001c525d9b;hb=5b45f78ed4293ebbe8cc73ad925bca11a300d021;hp=22936c1a4531a6338dcb2ca3e7916cf062f41490;hpb=cea3a50f515d1e39467073d2b447a9ddfa1a4852;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index 22936c1a4..ae64d1f19 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -24,8 +24,8 @@ *) module C = Cic -module D = Deannotate -module DTI = DoubleTypeInference +module I = CicInspect +module S = CicSubstitution module TC = CicTypeChecker module Un = CicUniv module UM = UriManager @@ -34,40 +34,39 @@ module HObj = HelmLibraryObjects module A = Cic2acic module Ut = CicUtil module E = CicEnvironment -module PER = ProofEngineReduction +module Pp = CicPp +module PEH = ProofEngineHelpers +module HEL = HExtlib +module DTI = DoubleTypeInference +module NU = CicNotationUtil +module L = Librarian module Cl = ProceduralClassify -module M = ProceduralMode module T = ProceduralTypes module Cn = ProceduralConversion +module H = ProceduralHelpers type status = { sorts : (C.id, A.sort_kind) Hashtbl.t; types : (C.id, A.anntypes) Hashtbl.t; - prefix: string; max_depth: int option; depth: int; context: C.context; - intros: string list; - ety: C.annterm option + case: int list } -(* helpers ******************************************************************) - -let id x = x +let debug = ref false -let comp f g x = f (g x) - -let cic = D.deannotate_term +(* helpers ******************************************************************) let split2_last l1 l2 = try let n = pred (List.length l1) in - let before1, after1 = T.list_split n l1 in - let before2, after2 = T.list_split n l2 in + let before1, after1 = HEL.split_nth n l1 in + let before2, after2 = HEL.split_nth n l2 in before1, before2, List.hd after1, List.hd after2 with Invalid_argument _ -> failwith "A2P.split2_last" - + let string_of_head = function | C.ASort _ -> "sort" | C.AConst _ -> "const" @@ -86,16 +85,21 @@ let string_of_head = function | C.AMeta _ -> "meta" | C.AImplicit _ -> "implict" -let clear st = {st with intros = []; ety = None} +let next st = {st with depth = succ st.depth} -let next st = {(clear st) with depth = succ st.depth} +let add st entry = {st with context = entry :: st.context} -let set_ety st ety = - if st.ety = None then {st with ety = ety} else st +let push st = {st with case = 1 :: st.case} -let add st entry intro ety = - let st = set_ety st ety in - {st with context = entry :: st.context; intros = intro :: st.intros} +let inc st = + {st with case = match st.case with + | [] -> [] + | hd :: tl -> succ hd :: tl + } + +let case st str = + let case = String.concat "." (List.rev_map string_of_int st.case) in + Printf.sprintf "case %s: %s" case str let test_depth st = try @@ -114,21 +118,19 @@ let is_rewrite_left = function | C.AConst (_, uri, []) -> UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri | _ -> false -(* -let get_ind_name uri tno xcno = -try - let ts = match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (ts, _, _,_), _ -> ts - | _ -> assert false - in - let tname, cs = match List.nth ts tno with - | (name, _, _, cs) -> name, cs - in - match xcno with - | None -> tname - | Some cno -> fst (List.nth cs (pred cno)) -with Invalid_argument _ -> failwith "A2P.get_ind_name" -*) + +let is_fwd_rewrite_right hd tl = + if is_rewrite_right hd then match List.nth tl 3 with + | C.ARel _ -> true + | _ -> false + else false + +let is_fwd_rewrite_left hd tl = + if is_rewrite_left hd then match List.nth tl 3 with + | C.ARel _ -> true + | _ -> false + else false + let get_inner_types st v = try let id = Ut.id_of_annterm v in @@ -137,235 +139,401 @@ try | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st) with Not_found -> None with Invalid_argument _ -> failwith "A2P.get_inner_types" - +(* let get_inner_sort st v = try let id = Ut.id_of_annterm v in try Hashtbl.find st.sorts id with Not_found -> `Type (CicUniv.fresh()) with Invalid_argument _ -> failwith "A2P.get_sort" +*) +let get_entry st id = + let rec aux = function + | [] -> assert false + | Some (C.Name name, e) :: _ when name = id -> e + | _ :: tl -> aux tl + in + aux st.context + +let string_of_atomic = function + | C.ARel (_, _, _, s) -> s + | C.AVar (_, uri, _) -> H.name_of_uri uri None None + | C.AConst (_, uri, _) -> H.name_of_uri uri None None + | C.AMutInd (_, uri, i, _) -> H.name_of_uri uri (Some i) None + | C.AMutConstruct (_, uri, i, j, _) -> H.name_of_uri uri (Some i) (Some j) + | _ -> "" + +let get_sub_names head l = + let s = string_of_atomic head in + if s = "" then [] else + let map (names, i) _ = + let name = Printf.sprintf "%s_%u" s i in name :: names, succ i + in + let names, _ = List.fold_left map ([], 1) l in + List.rev names + +let get_type msg st t = H.get_type msg st.context (H.cic t) + +let clear_absts m = + let rec aux k n = function + | C.ALambda (id, s, v, t) when k > 0 -> + C.ALambda (id, s, v, aux (pred k) n t) + | C.ALambda (_, _, _, t) when n > 0 -> + aux 0 (pred n) (Cn.lift 1 (-1) t) + | t when n > 0 -> + Printf.eprintf "A2P.clear_absts: %u %s\n" n (Pp.ppterm (H.cic t)); + assert false + | t -> t + in + aux m (* proof construction *******************************************************) -let unused_premise = "UNUSED" - -let defined_premise = "DEFINED" +let anonymous_premise = C.Name "UNNAMED" -let assumed_premise = "ASSUMED" - -let expanded_premise = "EXPANDED" - -let convert st v = - match get_inner_types st v with - | Some (st, et) -> - let cst, cet = cic st, cic et in - if PER.alpha_equivalence cst cet then [] else - [T.Change (st, et, "")] - | None -> [] - -let eta_expand n t = - let ty = C.AImplicit ("", None) in - let name i = Printf.sprintf "%s%u" expanded_premise i in - let lambda i t = C.ALambda ("", C.Name (name i), ty, t) in - let arg i n = T.mk_arel (n - i) (name i) in - let rec aux i f a = - if i >= n then f, a else aux (succ i) (comp f (lambda i)) (arg i n :: a) +let mk_exp_args hd tl classes synth = + let meta id = C.AImplicit (id, None) in + let map v (cl, b) = + if I.overlaps synth cl && b then v else meta "" in - let absts, args = aux 0 id [] in - match Cn.lift 1 n t with - | C.AAppl (id, ts) -> absts (C.AAppl (id, ts @ args)) - | t -> absts (C.AAppl ("", t :: args)) - -let appl_expand n = function - | C.AAppl (id, ts) -> - let before, after = T.list_split (List.length ts + n) ts in - C.AAppl ("", C.AAppl (id, before) :: after) - | _ -> assert false - -let get_intro name t = -try -match name with - | C.Anonymous -> unused_premise - | C.Name s -> - if DTI.does_not_occur 1 (cic t) then unused_premise else s -with Invalid_argument _ -> failwith "A2P.get_intro" - -let mk_intros st script = -try - if st.intros = [] then script else - let count = List.length st.intros in - let p0 = T.Whd (count, "") in - let p1 = T.Intros (Some count, List.rev st.intros, "") in - match st.ety with - | Some ety when Cn.need_whd count ety -> p0 :: p1 :: script - | _ -> p1 :: script -with Invalid_argument _ -> failwith "A2P.mk_intros" - -let rec mk_atomic st dtext what = - if T.is_atomic what then [], what else - let name = defined_premise in - mk_fwd_proof st dtext name what, T.mk_arel 0 name - -and mk_fwd_rewrite st dtext name tl direction = - let what, where = List.nth tl 5, List.nth tl 3 in - let rewrite premise = - let script, what = mk_atomic st dtext what in - T.Rewrite (direction, what, Some (premise, name), dtext) :: script + let rec aux = function + | [] -> [] + | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl) + in + let args = T.list_rev_map2 map tl classes in + let args = aux args in + if args = [] then hd else C.AAppl ("", hd :: args) + +let mk_convert st ?name sty ety note = + let e = Cn.hole "" in + let csty, cety = H.cic sty, H.cic ety in + let script = + if !debug then + let sname = match name with None -> "" | Some (id, _) -> id in + let note = Printf.sprintf "%s: %s\nSINTH: %s\nEXP: %s" + note sname (Pp.ppterm csty) (Pp.ppterm cety) + in + [T.Note note] + else [] + in + assert (Ut.is_sober st.context csty); + assert (Ut.is_sober st.context cety); + if Ut.alpha_equivalence csty cety then script else + let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in + match name with + | None -> T.Change (sty, ety, None, e, "") :: script + | Some (id, i) -> + begin match get_entry st id with + | C.Def _ -> assert false (* T.ClearBody (id, "") :: script *) + | C.Decl _ -> + T.Change (ety, sty, Some (id, Some id), e, "") :: script + end + +let convert st ?name v = + match get_inner_types st v with + | None -> + if !debug then [T.Note "NORMAL: NO INNER TYPES"] else [] + | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL" + +let get_intro = function + | C.Anonymous -> None + | C.Name s -> Some s + +let mk_preamble st what script = + convert st what @ script + +let mk_arg st = function + | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what + | _ -> [] + +let mk_fwd_rewrite st dtext name tl direction v t ity = + let compare premise = function + | None -> true + | Some s -> s = premise in + assert (List.length tl = 6); + let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in + let e = Cn.mk_pattern 1 predicate in + if (Cn.does_not_occur e) then st, [] else match where with - | C.ARel (_, _, _, binder) -> rewrite binder - | _ -> - assert (get_inner_sort st where = `Prop); - let pred, old = List.nth tl 2, List.nth tl 1 in - let pred_name = defined_premise in - let pred_text = "extracted" in - let p1 = T.LetIn (pred_name, pred, pred_text) in - let cut_name = assumed_premise in - let cut_type = C.AAppl ("", [T.mk_arel 0 pred_name; old]) in - let cut_text = "" in - let p2 = T.Cut (cut_name, cut_type, cut_text) in - let qs = [rewrite cut_name; mk_proof (next st) where] in - [T.Branch (qs, ""); p2; p1] - -and mk_fwd_proof st dtext name = function - | C.AAppl (_, hd :: tl) as v -> - if is_rewrite_right hd then mk_fwd_rewrite st dtext name tl true else - if is_rewrite_left hd then mk_fwd_rewrite st dtext name tl false else - let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in - begin match get_inner_types st v with - | Some (ity, _) when M.bkd st.context ty -> - let qs = [[T.Id ""]; mk_proof (next st) v] in - [T.Branch (qs, ""); T.Cut (name, ity, dtext)] - | _ -> - let (classes, rc) as h = Cl.classify st.context ty in - let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - [T.LetIn (name, v, dtext ^ text)] - end - | C.AMutCase (id, uri, tyno, outty, arg, cases) as v -> - begin match Cn.mk_ind st.context id uri tyno outty arg cases with - | None -> [T.LetIn (name, v, dtext)] - | Some v -> mk_fwd_proof st dtext name v - end - | v -> - [T.LetIn (name, v, dtext)] - -and mk_proof st = function - | C.ALambda (_, name, v, t) as what -> - let entry = Some (name, C.Decl (cic v)) in - let intro = get_intro name t in - let ety = match get_inner_types st what with - | Some (_, ety) -> Some ety - | None -> None + | C.ARel (_, _, i, premise) as w -> + let script name = + let where = Some (premise, name) in + let script = mk_arg st what @ mk_arg st w in + T.Rewrite (direction, what, where, e, dtext) :: script + in + if DTI.does_not_occur (succ i) (H.cic t) || compare premise name then + {st with context = Cn.clear st.context premise}, script name + else begin + assert (Ut.is_sober st.context (H.cic ity)); + let ity = H.acic_bc st.context ity in + let br1 = [T.Id ""] in + let br2 = List.rev (T.Apply (w, "assumption") :: script None) in + let text = "non-linear rewrite" in + st, [T.Branch ([br2; br1], ""); T.Cut (name, ity, text)] + end + | _ -> assert false + +let mk_rewrite st dtext where qs tl direction t = + assert (List.length tl = 5); + let predicate = List.nth tl 2 in + let e = Cn.mk_pattern 1 predicate in + let script = [T.Branch (qs, "")] in + if (Cn.does_not_occur e) then script else + T.Rewrite (direction, where, None, e, dtext) :: script + +let rec proc_lambda st what name v t = + let name = match name with + | C.Anonymous -> H.mk_fresh_name st.context anonymous_premise + | name -> name + in + let entry = Some (name, C.Decl (H.cic v)) in + let intro = get_intro name in + let script = proc_proof (add st entry) t in + let script = T.Intros (Some 1, [intro], "") :: script in + mk_preamble st what script + +and proc_letin st what name v w t = + let intro = get_intro name in + let proceed, dtext = test_depth st in + let script = if proceed then + let st, hyp, rqv = match get_inner_types st v with + | Some (ity, _) -> + let st, rqv = match v with + | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl -> + mk_fwd_rewrite st dtext intro tl true v t ity + | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> + mk_fwd_rewrite st dtext intro tl false v t ity + | v -> + assert (Ut.is_sober st.context (H.cic ity)); + let ity = H.acic_bc st.context ity in + let qs = [proc_proof (next st) v; [T.Id ""]] in + st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] + in + st, C.Decl (H.cic ity), rqv + | None -> + st, C.Def (H.cic v, H.cic w), [T.LetIn (intro, v, dtext)] in - mk_proof (add st entry intro ety) t - | C.ALetIn (_, name, v, t) as what -> - let proceed, dtext = test_depth st in - let script = if proceed then - let entry = Some (name, C.Def (cic v, None)) in - let intro = get_intro name t in - let q = mk_proof (next (add st entry intro None)) t in - List.rev_append (mk_fwd_proof st dtext intro v) q - else - [T.Apply (what, dtext)] + let entry = Some (name, hyp) in + let qt = proc_proof (next (add st entry)) t in + List.rev_append rqv qt + else + [T.Apply (what, dtext)] + in + mk_preamble st what script + +and proc_rel st what = + let _, dtext = test_depth st in + let text = "assumption" in + let script = [T.Apply (what, dtext ^ text)] in + mk_preamble st what script + +and proc_mutconstruct st what = + let _, dtext = test_depth st in + let script = [T.Apply (what, dtext)] in + mk_preamble st what script + +and proc_const st what = + let _, dtext = test_depth st in + let script = [T.Apply (what, dtext)] in + mk_preamble st what script + +and proc_appl st what hd tl = + let proceed, dtext = test_depth st in + let script = if proceed then + let ty = match get_inner_types st hd with + | Some (ity, _) -> H.cic ity + | None -> get_type "TC2" st hd in - mk_intros st script - | C.ARel _ as what -> - let _, dtext = test_depth st in - let text = "assumption" in - let script = [T.Apply (what, dtext ^ text)] in - mk_intros st script - | C.AMutConstruct _ as what -> - let _, dtext = test_depth st in - let script = [T.Apply (what, dtext)] in - mk_intros st script - | C.AAppl (_, hd :: tl) as t -> - let proceed, dtext = test_depth st in - let script = if proceed then - let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in - let (classes, rc) as h = Cl.classify st.context ty in - let decurry = List.length classes - List.length tl in - if decurry < 0 then mk_proof (clear st) (appl_expand decurry t) else - if decurry > 0 then mk_proof (clear st) (eta_expand decurry t) else - let synth = Cl.S.singleton 0 in - let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - match rc with - | Some (i, j) when i > 1 && i <= List.length classes -> - let classes, tl, _, what = split2_last classes tl in - let script, what = mk_atomic st dtext what in - let synth = Cl.S.add 1 synth in - let qs = mk_bkd_proofs (next st) synth classes tl in - if is_rewrite_right hd then - List.rev script @ convert st t @ - [T.Rewrite (false, what, None, dtext); T.Branch (qs, "")] - else if is_rewrite_left hd then - List.rev script @ convert st t @ - [T.Rewrite (true, what, None, dtext); T.Branch (qs, "")] - else - let using = Some hd in - List.rev script @ convert st t @ - [T.Elim (what, using, dtext ^ text); T.Branch (qs, "")] - | _ -> - let qs = mk_bkd_proofs (next st) synth classes tl in - let script, hd = mk_atomic st dtext hd in - List.rev script @ convert st t @ - [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] - else - [T.Apply (t, dtext)] + let classes, rc = Cl.classify st.context ty in + let goal_arity, goal = match get_inner_types st what with + | None -> 0, None + | Some (ity, ety) -> + snd (PEH.split_with_whd (st.context, H.cic ity)), Some (H.cic ety) in - mk_intros st script - | C.AMutCase (id, uri, tyno, outty, arg, cases) -> - begin match Cn.mk_ind st.context id uri tyno outty arg cases with - | None -> - let text = Printf.sprintf "%s" "UNEXPANDED: mutcase" in - let script = [T.Note text] in - mk_intros st script - | Some t -> mk_proof st t - end - | t -> - let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in - let script = [T.Note text] in - mk_intros st script - -and mk_bkd_proofs st synth classes ts = + let parsno, argsno = List.length classes, List.length tl in + let decurry = parsno - argsno in + let diff = goal_arity - decurry in + if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd))); + let classes = Cl.adjust st.context tl ?goal classes in + let rec mk_synth a n = + if n < 0 then a else mk_synth (I.S.add n a) (pred n) + in + let synth = mk_synth I.S.empty decurry in + let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in + let script = List.rev (mk_arg st hd) in + match rc with + | Some (i, j, uri, tyno) -> + let classes2, tl2, _, where = split2_last classes tl in + let script2 = List.rev (mk_arg st where) @ script in + let synth2 = I.S.add 1 synth in + let names = H.get_ind_names uri tyno in + let qs = proc_bkd_proofs (next st) synth2 names classes2 tl2 in + if List.length qs <> List.length names then + let qs = proc_bkd_proofs (next st) synth [] classes tl in + let hd = mk_exp_args hd tl classes synth in + script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] + else if is_rewrite_right hd then + script2 @ mk_rewrite st dtext where qs tl2 false what + else if is_rewrite_left hd then + script2 @ mk_rewrite st dtext where qs tl2 true what + else + let predicate = List.nth tl2 (parsno - i) in + let e = Cn.mk_pattern j predicate in + let using = Some hd in + script2 @ + [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] + | None -> + let names = get_sub_names hd tl in + let qs = proc_bkd_proofs (next st) synth names classes tl in + let hd = mk_exp_args hd tl classes synth in + script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] + else + [T.Apply (what, dtext)] + in + mk_preamble st what script + +and proc_case st what uri tyno u v ts = + let proceed, dtext = test_depth st in + let script = if proceed then + let synth, classes = I.S.empty, Cl.make ts in + let names = H.get_ind_names uri tyno in + let qs = proc_bkd_proofs (next st) synth names classes ts in + let lpsno, _ = H.get_ind_type uri tyno in + let ps, sort_disp = H.get_ind_parameters st.context (H.cic v) in + let _, rps = HEL.split_nth lpsno ps in + let rpsno = List.length rps in + let predicate = clear_absts rpsno (1 - sort_disp) u in + let e = Cn.mk_pattern rpsno predicate in + let text = "" in + let script = List.rev (mk_arg st v) in + script @ [T.Cases (v, e, dtext ^ text); T.Branch (qs, "")] + else + [T.Apply (what, dtext)] + in + mk_preamble st what script + +and proc_other st what = + let _, dtext = test_depth st in + let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in + let script = [T.Apply (what, dtext ^ text)] in + mk_preamble st what script + +and proc_proof st t = + let f st = + let xtypes, note = match get_inner_types st t with + | Some (it, et) -> Some (H.cic it, H.cic et), + (Printf.sprintf "\nInferred: %s\nExpected: %s" + (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et))) + | None -> None, "\nNo types" + in + let context, _clears = Cn.get_clears st.context (H.cic t) xtypes in + {st with context = context} + in + match t with + | C.ALambda (_, name, w, t) as what -> proc_lambda (f st) what name w t + | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t + | C.ARel _ as what -> proc_rel (f st) what + | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what + | C.AConst _ as what -> proc_const (f st) what + | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl + | C.AMutCase (_, uri, i, u, v, ts) as what -> proc_case (f st) what uri i u v ts + | what -> proc_other (f st) what + +and proc_bkd_proofs st synth names classes ts = try - let _, dtext = test_depth st in - let aux inv v = - if Cl.overlaps synth inv then None else - if Cl.S.is_empty inv then Some (mk_proof st v) else - Some [T.Apply (v, dtext ^ "dependent")] + let get_names b = ref (names, if b then push st else st) in + let get_note f b names = + match !names with + | [], st -> f st + | "" :: tl, st -> names := tl, st; f st + | hd :: tl, st -> + let note = case st hd in + names := tl, inc st; + if b then T.Note note :: f st else f st in - T.list_map2_filter aux classes ts -with Invalid_argument _ -> failwith "A2P.mk_bkd_proofs" + let _, dtext = test_depth st in + let aux (inv, _) v = + if I.overlaps synth inv then None else + if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else + Some (get_note (fun _ -> [T.Apply (v, dtext ^ "dependent")])) + in + let ps = T.list_map2_filter aux classes ts in + let b = List.length ps > 1 in + let names = get_names b in + List.rev_map (fun f -> f b names) ps + +with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) (* object costruction *******************************************************) -let is_theorem pars = - List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || - List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars +let th_flavours = [`Theorem; `Lemma; `Remark; `Fact] + +let def_flavours = [`Definition] -let mk_obj st = function - | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> - let ast = mk_proof (set_ety st (Some t)) v in - let count = T.count_steps 0 ast in - let text = Printf.sprintf "tactics: %u" count in - T.Theorem (s, t, text) :: ast @ [T.Qed ""] - | _ -> - failwith "not a theorem" +let get_flavour ?flavour attrs = + let rec aux = function + | [] -> List.hd th_flavours + | `Flavour fl :: _ -> fl + | _ :: tl -> aux tl + in + match flavour with + | Some fl -> fl + | None -> aux attrs + +let proc_obj ?flavour ?(info="") st = function + | C.AConstant (_, _, s, Some v, t, [], attrs) -> + begin match get_flavour ?flavour attrs with + | flavour when List.mem flavour th_flavours -> + let ast = proc_proof st v in + let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in + let text = Printf.sprintf "%s\n%s%s: %u\n%s: %u\n%s" + "COMMENTS" info "Tactics" steps "Final nodes" nodes "END" + in + T.Statement (flavour, Some s, t, None, "") :: ast @ [T.Qed text] + | flavour when List.mem flavour def_flavours -> + [T.Statement (flavour, Some s, t, Some v, "")] + | _ -> + failwith "not a theorem, definition, axiom or inductive type" + end + | C.AConstant (_, _, s, None, t, [], attrs) -> + [T.Statement (`Axiom, Some s, t, None, "")] + | C.AInductiveDefinition (_, types, [], lpsno, attrs) -> + [T.Inductive (types, lpsno, "")] + | _ -> + failwith "not a theorem, definition, axiom or inductive type" (* interface functions ******************************************************) -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = +let procedural_of_acic_object ~ids_to_inner_sorts ~ids_to_inner_types + ?info ?depth ?flavour prefix anobj = + let st = { + sorts = ids_to_inner_sorts; + types = ids_to_inner_types; + max_depth = depth; + depth = 0; + context = []; + case = [] + } in + L.time_stamp "P : LEVEL 2 "; + HLog.debug "Procedural: level 2 transformation"; + let steps = proc_obj st ?flavour ?info anobj in + L.time_stamp "P : RENDERING"; + HLog.debug "Procedural: grafite rendering"; + let r = List.rev (T.render_steps [] steps) in + L.time_stamp "P : DONE "; r + +let procedural_of_acic_term ~ids_to_inner_sorts ~ids_to_inner_types ?depth + prefix context annterm = let st = { - sorts = ids_to_inner_sorts; - types = ids_to_inner_types; - prefix = prefix; - max_depth = depth; - depth = 0; - context = []; - intros = []; - ety = None + sorts = ids_to_inner_sorts; + types = ids_to_inner_types; + max_depth = depth; + depth = 0; + context = context; + case = [] } in - HLog.debug "Level 2 transformation"; - let steps = mk_obj st aobj in - HLog.debug "grafite rendering"; + HLog.debug "Procedural: level 2 transformation"; + let steps = proc_proof st annterm in + HLog.debug "Procedural: grafite rendering"; List.rev (T.render_steps [] steps)