X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=c004fd346b4e2a9ff30714fa3cf84af50a5acf00;hb=58ce236b589513e779e00759e54e72cbbf2bd2c3;hp=ff8aaea883c2541af693c5b19057e5ecb07074b7;hpb=d178a0a4809c0c6693b2c00ab7359a1b414cd805;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index ff8aaea88..c004fd346 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -25,7 +25,6 @@ module C = Cic module I = CicInspect -module D = Deannotate module S = CicSubstitution module TC = CicTypeChecker module Un = CicUniv @@ -38,10 +37,12 @@ module E = CicEnvironment module Pp = CicPp module PEH = ProofEngineHelpers module HEL = HExtlib +module DTI = DoubleTypeInference module Cl = ProceduralClassify module T = ProceduralTypes module Cn = ProceduralConversion +module H = ProceduralHelpers type status = { sorts : (C.id, A.sort_kind) Hashtbl.t; @@ -50,14 +51,15 @@ type status = { max_depth: int option; depth: int; context: C.context; - intros: string list; - case: int list + intros: string option list; + clears: string list; + clears_note: string; + case: int list; + skip_thm_and_qed : bool; } (* helpers ******************************************************************) -let cic = D.deannotate_term - let split2_last l1 l2 = try let n = pred (List.length l1) in @@ -151,7 +153,7 @@ with Invalid_argument _ -> failwith "A2P.get_sort" *) let get_type msg st bo = try - let ty, _ = TC.type_of_aux' [] st.context (cic bo) Un.empty_ugraph in + let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.empty_ugraph in ty with e -> failwith (msg ^ ": " ^ Printexc.to_string e) @@ -175,7 +177,7 @@ with Invalid_argument _ -> failwith "A2P.get_ind_names" (* proof construction *******************************************************) -let unused_premise = "UNUSED" +let used_premise = C.Name "USED" let mk_exp_args hd tl classes synth = let meta id = C.AImplicit (id, None) in @@ -190,79 +192,115 @@ let mk_exp_args hd tl classes synth = let args = aux args in if args = [] then hd else C.AAppl ("", hd :: args) +let mk_convert st ?name sty ety note = + let e = Cn.hole "" in + let csty, cety = H.cic sty, H.cic ety in + let _note = Printf.sprintf "%s\nSINTH: %s\nEXP: %s" + note (Pp.ppterm csty) (Pp.ppterm cety) + in + assert (Ut.is_sober csty); + assert (Ut.is_sober cety); + if Ut.alpha_equivalence csty cety then [(* T.Note note *)] else + let sty, ety = H.acic_bc st.context sty, H.acic_bc st.context ety in + match name with + | None -> [T.Change (sty, ety, None, e, ""(*note*))] + | Some (id, i) -> + begin match get_entry st id with + | C.Def _ -> assert false (* [T.ClearBody (id, note)] *) + | C.Decl _ -> [T.Change (ety, sty, Some (id, Some id), e, "" (* note *))] + end + let convert st ?name v = match get_inner_types st v with - | None -> [] - | Some (sty, ety) -> - let e = Cn.hole "" in - let csty, cety = cic sty, cic ety in - if Ut.alpha_equivalence csty cety then [] else - match name with - | None -> [T.Change (sty, ety, None, e, "")] - | Some (id, i) -> - begin match get_entry st id with - | C.Def _ -> [T.ClearBody (id, "")] - | C.Decl w -> - let w = S.lift i w in - if Ut.alpha_equivalence csty w then [] - else - [T.Note (Pp.ppterm csty); T.Note (Pp.ppterm w); - T.Change (sty, ety, Some (id, id), e, "")] - end - + | None -> [(*T.Note "NORMAL: NO INNER TYPES"*)] + | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL" + +let convert_elim st ?name t v pattern = + match t, get_inner_types st t, get_inner_types st v with + | _, None, _ + | _, _, None -> [(* T.Note "ELIM: NO INNER TYPES"*)] + | C.AAppl (_, hd :: tl), Some (tsty, _), Some (vsty, _) -> + let where = List.hd (List.rev tl) in + let cty = Cn.elim_inferred_type + st.context (H.cic vsty) (H.cic where) (H.cic hd) (H.cic pattern) + in + mk_convert st ?name (Cn.fake_annotate "" st.context cty) tsty "ELIM" + | _, Some _, Some _ -> assert false + let get_intro = function - | C.Anonymous -> unused_premise - | C.Name s -> s - -let mk_intros st script = - if st.intros = [] then script else - let count = List.length st.intros in - T.Intros (Some count, List.rev st.intros, "") :: script + | C.Anonymous -> None + | C.Name s -> Some s + +let mk_intros st what script = + let intros st script = + if st.intros = [] then script else + let count = List.length st.intros in + T.Intros (Some count, List.rev st.intros, "") :: script + in + let clears st script = + if true (* st.clears = [] *) then script else T.Clear (st.clears, st.clears_note) :: script + in + intros st (clears st (convert st what @ script)) let mk_arg st = function | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what | _ -> [] -let mk_fwd_rewrite st dtext name tl direction = +let mk_fwd_rewrite st dtext name tl direction t = assert (List.length tl = 6); let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in match where with - | C.ARel (_, _, _, premise) -> - let script = mk_arg st what in + | C.ARel (_, _, i, premise) as v -> let where = Some (premise, name) in - T.Rewrite (direction, what, where, e, dtext) :: script +(* let _script = convert_elim st ~name:(premise, i) t v e in *) + let script = mk_arg st what @ mk_arg st v (* @ script *) in + let st = {st with context = Cn.clear st.context premise} in + st, T.Rewrite (direction, what, where, e, dtext) :: script | _ -> assert false -let mk_rewrite st dtext what qs tl direction = +let mk_rewrite st dtext where qs tl direction t = assert (List.length tl = 5); let predicate = List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in - [T.Rewrite (direction, what, None, e, dtext); T.Branch (qs, "")] + let script = [] (* convert_elim st t t e *) in + script @ [T.Rewrite (direction, where, None, e, dtext); T.Branch (qs, "")] let rec proc_lambda st name v t = - let entry = Some (name, C.Decl (cic v)) in + let dno = DTI.does_not_occur 1 (H.cic t) in + let dno = dno && match get_inner_types st t with + | None -> false + | Some (it, et) -> + DTI.does_not_occur 1 (H.cic it) && DTI.does_not_occur 1 (H.cic et) + in + let name = match dno, name with + | true, _ -> C.Anonymous + | false, C.Anonymous -> H.mk_fresh_name st.context used_premise + | false, name -> name + in + let entry = Some (name, C.Decl (H.cic v)) in let intro = get_intro name in proc_proof (add st entry intro) t -and proc_letin st what name v t = +and proc_letin st what name v w t = let intro = get_intro name in let proceed, dtext = test_depth st in let script = if proceed then - let hyp, rqv = match get_inner_types st v with + let st, hyp, rqv = match get_inner_types st v with | Some (ity, _) -> - let rqv = match v with + let st, rqv = match v with | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl -> - mk_fwd_rewrite st dtext intro tl true + mk_fwd_rewrite st dtext intro tl true v | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> - mk_fwd_rewrite st dtext intro tl false + mk_fwd_rewrite st dtext intro tl false v | v -> let qs = [proc_proof (next st) v; [T.Id ""]] in - [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] + let ity = H.acic_bc st.context ity in + st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] in - C.Decl (cic ity), rqv + st, C.Decl (H.cic ity), rqv | None -> - C.Def (cic v, None), [T.LetIn (intro, v, dtext)] + st, C.Def (H.cic v, H.cic w), [T.LetIn (intro, v, dtext)] in let entry = Some (name, hyp) in let qt = proc_proof (next (add st entry intro)) t in @@ -270,18 +308,23 @@ and proc_letin st what name v t = else [T.Apply (what, dtext)] in - mk_intros st script + mk_intros st what script and proc_rel st what = let _, dtext = test_depth st in let text = "assumption" in let script = [T.Apply (what, dtext ^ text)] in - mk_intros st script + mk_intros st what script and proc_mutconstruct st what = let _, dtext = test_depth st in let script = [T.Apply (what, dtext)] in - mk_intros st script + mk_intros st what script + +and proc_const st what = + let _, dtext = test_depth st in + let script = [T.Apply (what, dtext)] in + mk_intros st what script and proc_appl st what hd tl = let proceed, dtext = test_depth st in @@ -290,18 +333,18 @@ and proc_appl st what hd tl = let classes, rc = Cl.classify st.context ty in let goal_arity = match get_inner_types st what with | None -> 0 - | Some (ity, _) -> snd (PEH.split_with_whd (st.context, cic ity)) + | Some (ity, _) -> snd (PEH.split_with_whd (st.context, H.cic ity)) in let parsno, argsno = List.length classes, List.length tl in let decurry = parsno - argsno in let diff = goal_arity - decurry in - if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (cic hd))); + if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd))); let rec mk_synth a n = if n < 0 then a else mk_synth (I.S.add n a) (pred n) in let synth = mk_synth I.S.empty decurry in let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in - let script = List.rev (mk_arg st hd) @ convert st what in + let script = List.rev (mk_arg st hd) in match rc with | Some (i, j, uri, tyno) -> let classes, tl, _, where = split2_last classes tl in @@ -310,14 +353,14 @@ and proc_appl st what hd tl = let names = get_ind_names uri tyno in let qs = proc_bkd_proofs (next st) synth names classes tl in if is_rewrite_right hd then - script @ mk_rewrite st dtext where qs tl false + script @ mk_rewrite st dtext where qs tl false what else if is_rewrite_left hd then - script @ mk_rewrite st dtext where qs tl true + script @ mk_rewrite st dtext where qs tl true what else let predicate = List.nth tl (parsno - i) in let e = Cn.mk_pattern j predicate in let using = Some hd in - script @ + (* convert_elim st what what e @ *) script @ [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] | None -> let qs = proc_bkd_proofs (next st) synth [] classes tl in @@ -326,20 +369,33 @@ and proc_appl st what hd tl = else [T.Apply (what, dtext)] in - mk_intros st script + mk_intros st what script and proc_other st what = let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in let script = [T.Note text] in - mk_intros st script - -and proc_proof st = function - | C.ALambda (_, name, w, t) -> proc_lambda st name w t - | C.ALetIn (_, name, v, t) as what -> proc_letin st what name v t - | C.ARel _ as what -> proc_rel st what - | C.AMutConstruct _ as what -> proc_mutconstruct st what - | C.AAppl (_, hd :: tl) as what -> proc_appl st what hd tl - | what -> proc_other st what + mk_intros st what script + +and proc_proof st t = + let f st = + let xtypes, note = match get_inner_types st t with + | Some (it, et) -> Some (H.cic it, H.cic et), + (Printf.sprintf "\nInferred: %s\nExpected: %s" + (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et))) + | None -> None, "\nNo types" + in + let context, clears = Cn.get_clears st.context (H.cic t) xtypes in + let note = Pp.ppcontext st.context ^ note in + {st with context = context; clears = clears; clears_note = note; } + in + match t with + | C.ALambda (_, name, w, t) -> proc_lambda st name w t + | C.ALetIn (_, name, v, w, t) as what -> proc_letin (f st) what name v w t + | C.ARel _ as what -> proc_rel (f st) what + | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what + | C.AConst _ as what -> proc_const (f st) what + | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl + | what -> proc_other (f st) what and proc_bkd_proofs st synth names classes ts = try @@ -368,31 +424,37 @@ with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) (* object costruction *******************************************************) -let is_theorem pars = +let is_theorem pars = + pars = [] || List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars let proc_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> let ast = proc_proof st v in - let count = T.count_steps 0 ast in - let text = Printf.sprintf "tactics: %u" count in - T.Theorem (s, t, "") :: ast @ [T.Qed text] + let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in + let text = Printf.sprintf "tactics: %u\nnodes: %u" steps nodes in + if st.skip_thm_and_qed then ast + else T.Theorem (Some s, t, "") :: ast @ [T.Qed text] | _ -> failwith "not a theorem" (* interface functions ******************************************************) -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = +let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth +?(skip_thm_and_qed=false) prefix aobj = let st = { - sorts = ids_to_inner_sorts; - types = ids_to_inner_types; - prefix = prefix; - max_depth = depth; - depth = 0; - context = []; - intros = []; - case = [] + sorts = ids_to_inner_sorts; + types = ids_to_inner_types; + prefix = prefix; + max_depth = depth; + depth = 0; + context = []; + intros = []; + clears = []; + clears_note = ""; + case = []; + skip_thm_and_qed = skip_thm_and_qed; } in HLog.debug "Procedural: level 2 transformation"; let steps = proc_obj st aobj in