X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=c9423268ccb9d144cb1c536ee5cd258307d780b4;hb=b54b2b352753b1c784d06118fc689c1ee9f9feaf;hp=28fa9894795e52e629d6cfdf1d14a3064ccfebf6;hpb=da240cc33abae83ca35782dee48b1a9a3a87ff76;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index 28fa98947..c9423268c 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -26,7 +26,7 @@ module C = Cic module I = CicInspect module D = Deannotate -module DTI = DoubleTypeInference +module S = CicSubstitution module TC = CicTypeChecker module Un = CicUniv module UM = UriManager @@ -35,11 +35,11 @@ module HObj = HelmLibraryObjects module A = Cic2acic module Ut = CicUtil module E = CicEnvironment -module PER = ProofEngineReduction +module Pp = CicPp +module PEH = ProofEngineHelpers +module HEL = HExtlib -module P = ProceduralPreprocess module Cl = ProceduralClassify -module M = ProceduralMode module T = ProceduralTypes module Cn = ProceduralConversion @@ -55,17 +55,13 @@ type status = { (* helpers ******************************************************************) -let identity x = x - -let comp f g x = f (g x) - let cic = D.deannotate_term let split2_last l1 l2 = try let n = pred (List.length l1) in - let before1, after1 = T.list_split n l1 in - let before2, after2 = T.list_split n l2 in + let before1, after1 = HEL.split_nth n l1 in + let before2, after2 = HEL.split_nth n l2 in before1, before2, List.hd after1, List.hd after2 with Invalid_argument _ -> failwith "A2P.split2_last" @@ -146,213 +142,205 @@ try | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st) with Not_found -> None with Invalid_argument _ -> failwith "A2P.get_inner_types" - +(* let get_inner_sort st v = try let id = Ut.id_of_annterm v in try Hashtbl.find st.sorts id with Not_found -> `Type (CicUniv.fresh()) with Invalid_argument _ -> failwith "A2P.get_sort" - +*) +let get_type msg st bo = +try + let ty, _ = TC.type_of_aux' [] st.context (cic bo) Un.empty_ugraph in + ty +with e -> failwith (msg ^ ": " ^ Printexc.to_string e) + +let get_entry st id = + let rec aux = function + | [] -> assert false + | Some (C.Name name, e) :: _ when name = id -> e + | _ :: tl -> aux tl + in + aux st.context + (* proof construction *******************************************************) let unused_premise = "UNUSED" -let defined_premise = "DEFINED" - -let expanded_premise = "EXPANDED" +let mk_exp_args hd tl classes synth = + let meta id = C.AImplicit (id, None) in + let map v (cl, b) = + if I.overlaps synth cl && b then v else meta "" + in + let rec aux = function + | [] -> [] + | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl) + in + let args = T.list_rev_map2 map tl classes in + let args = aux args in + if args = [] then hd else C.AAppl ("", hd :: args) let convert st ?name v = match get_inner_types st v with - | None -> [] - | Some (st, et) -> - let cst, cet = cic st, cic et in - if PER.alpha_equivalence cst cet then [] else - let e = Cn.mk_pattern [] (T.mk_arel 1 "") in + | None -> [] + | Some (sty, ety) -> + let e = Cn.mk_pattern 0 (T.mk_arel 1 "") in + let csty, cety = cic sty, cic ety in + if Ut.alpha_equivalence csty cety then [] else match name with - | None -> [T.Change (st, et, None, e, "")] - | Some id -> [T.Change (st, et, Some (id, id), e, ""); T.ClearBody (id, "")] - -let eta_expand n t = - let id = Ut.id_of_annterm t in - let ty = C.AImplicit ("", None) in - let name i = Printf.sprintf "%s%u" expanded_premise i in - let lambda i t = C.ALambda (id, C.Name (name i), ty, t) in - let arg i n = T.mk_arel (n - i) (name (n - i - 1)) in - let rec aux i f a = - if i >= n then f, a else aux (succ i) (comp f (lambda i)) (arg i n :: a) - in - let absts, args = aux 0 identity [] in - match Cn.lift 1 n t with - | C.AAppl (id, ts) -> absts (C.AAppl (id, ts @ args)) - | t -> absts (C.AAppl ("", t :: args)) - -let appl_expand n = function - | C.AAppl (id, ts) -> - let before, after = T.list_split (List.length ts + n) ts in - C.AAppl (id, C.AAppl ("", before) :: after) - | _ -> assert false - -let get_intro name t = -try -match name with + | None -> [T.Change (sty, ety, None, e, "")] + | Some (id, i) -> + begin match get_entry st id with + | C.Def _ -> [T.ClearBody (id, "")] + | C.Decl w -> + let w = S.lift i w in + if Ut.alpha_equivalence csty w then [] + else + [T.Note (Pp.ppterm csty); T.Note (Pp.ppterm w); + T.Change (sty, ety, Some (id, id), e, "")] + end + +let get_intro = function | C.Anonymous -> unused_premise - | C.Name s -> - if DTI.does_not_occur 1 (cic t) then unused_premise else s -with Invalid_argument _ -> failwith "A2P.get_intro" + | C.Name s -> s let mk_intros st script = -try if st.intros = [] then script else let count = List.length st.intros in T.Intros (Some count, List.rev st.intros, "") :: script -with Invalid_argument _ -> failwith "A2P.mk_intros" -let rec mk_atomic st dtext what = - if T.is_atomic what then - match what with - | C.ARel (_, _, _, name) -> convert st ~name what, what - | _ -> [], what - else - let name = defined_premise in - let script = convert st ~name what in - script @ mk_fwd_proof st dtext name what, T.mk_arel 0 name - -and mk_fwd_rewrite st dtext name tl direction = - let what, where = List.nth tl 5, List.nth tl 3 in - let rps, predicate = [List.nth tl 4], List.nth tl 2 in - let e = Cn.mk_pattern rps predicate in +let mk_arg st = function + | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what + | _ -> [] + +let mk_fwd_rewrite st dtext name tl direction = + assert (List.length tl = 6); + let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in + let e = Cn.mk_pattern 1 predicate in match where with | C.ARel (_, _, _, premise) -> - let script, what = mk_atomic st dtext what in - T.Rewrite (direction, what, Some (premise, name), e, dtext) :: script + let script = mk_arg st what in + let where = Some (premise, name) in + T.Rewrite (direction, what, where, e, dtext) :: script | _ -> assert false -and mk_fwd_proof st dtext name = function - | C.ALetIn (_, n, v, t) -> - let entry = Some (n, C.Def (cic v, None)) in - let intro = get_intro n t in - let qt = mk_fwd_proof (add st entry intro) dtext name t in - let qv = mk_fwd_proof st "" intro v in - List.append qt qv - | C.AAppl (_, hd :: tl) as v -> - if is_fwd_rewrite_right hd tl then mk_fwd_rewrite st dtext name tl true else - if is_fwd_rewrite_left hd tl then mk_fwd_rewrite st dtext name tl false else - let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in - begin match get_inner_types st v with - | Some (ity, _) when M.bkd st.context ty -> - let qs = [[T.Id ""]; mk_proof (next st) v] in - [T.Branch (qs, ""); T.Cut (name, ity, dtext)] - | _ -> - let (classes, rc) as h = Cl.classify st.context ty in - let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - [T.LetIn (name, v, dtext ^ text)] - end - | C.AMutCase (id, uri, tyno, outty, arg, cases) as v -> - begin match Cn.mk_ind st.context id uri tyno outty arg cases with - | None -> [T.LetIn (name, v, dtext)] - | Some v -> mk_fwd_proof st dtext name v - end - | C.ACast (_, v, _) -> - mk_fwd_proof st dtext name v - | v -> - match get_inner_types st v with +let mk_rewrite st dtext what qs tl direction = + assert (List.length tl = 5); + let predicate = List.nth tl 2 in + let e = Cn.mk_pattern 1 predicate in + [T.Rewrite (direction, what, None, e, dtext); T.Branch (qs, "")] + +let rec proc_lambda st name v t = + let entry = Some (name, C.Decl (cic v)) in + let intro = get_intro name in + proc_proof (add st entry intro) t + +and proc_letin st what name v t = + let intro = get_intro name in + let proceed, dtext = test_depth st in + let script = if proceed then + let hyp, rqv = match get_inner_types st v with | Some (ity, _) -> - let qs = [[T.Id ""]; mk_proof (next st) v] in - [T.Branch (qs, ""); T.Cut (name, ity, dtext)] - | _ -> - [T.LetIn (name, v, dtext)] - -and mk_proof st = function - | C.ALambda (_, name, v, t) -> - let entry = Some (name, C.Decl (cic v)) in - let intro = get_intro name t in - mk_proof (add st entry intro) t - | C.ALetIn (_, name, v, t) as what -> - let proceed, dtext = test_depth st in - let script = if proceed then - let entry = Some (name, C.Def (cic v, None)) in - let intro = get_intro name t in - let q = mk_proof (next (add st entry intro)) t in - List.rev_append (mk_fwd_proof st dtext intro v) q - else - [T.Apply (what, dtext)] + let rqv = match v with + | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl -> + mk_fwd_rewrite st dtext intro tl true + | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> + mk_fwd_rewrite st dtext intro tl false + | v -> + let qs = [proc_proof (next st) v; [T.Id ""]] in + [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] + in + C.Decl (cic ity), rqv + | None -> + C.Def (cic v, None), [T.LetIn (intro, v, dtext)] in - mk_intros st script - | C.ARel _ as what -> - let _, dtext = test_depth st in - let text = "assumption" in - let script = [T.Apply (what, dtext ^ text)] in - mk_intros st script - | C.AMutConstruct _ as what -> - let _, dtext = test_depth st in - let script = [T.Apply (what, dtext)] in - mk_intros st script - | C.AAppl (_, hd :: tl) as t -> - let proceed, dtext = test_depth st in - let script = if proceed then - let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in - let (classes, rc) as h = Cl.classify st.context ty in - let premises, _ = P.split st.context ty in - let decurry = List.length classes - List.length tl in - if decurry < 0 then mk_proof (clear st) (appl_expand decurry t) else - if decurry > 0 then mk_proof (clear st) (eta_expand decurry t) else - let synth = I.S.singleton 0 in - let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - match rc with - | Some (i, j) when i > 1 && i <= List.length classes && M.is_eliminator premises -> - let classes, tl, _, what = split2_last classes tl in - let script, what = mk_atomic st dtext what in - let synth = I.S.add 1 synth in - let qs = mk_bkd_proofs (next st) synth classes tl in - if is_rewrite_right hd then - let rps, predicate = [List.nth tl 4], List.nth tl 2 in - let e = Cn.mk_pattern rps predicate in - List.rev script @ convert st t @ - [T.Rewrite (false, what, None, e, dtext); T.Branch (qs, "")] - else if is_rewrite_left hd then - let rps, predicate = [List.nth tl 4], List.nth tl 2 in - let e = Cn.mk_pattern rps predicate in - List.rev script @ convert st t @ - [T.Rewrite (true, what, None, e, dtext); T.Branch (qs, "")] - else - let using = Some hd in - List.rev script @ convert st t @ - [T.Elim (what, using, dtext ^ text); T.Branch (qs, "")] - | _ -> - let qs = mk_bkd_proofs (next st) synth classes tl in - let script, hd = mk_atomic st dtext hd in - List.rev script @ convert st t @ - [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] - else - [T.Apply (t, dtext)] + let entry = Some (name, hyp) in + let qt = proc_proof (next (add st entry intro)) t in + List.rev_append rqv qt + else + [T.Apply (what, dtext)] + in + mk_intros st script + +and proc_rel st what = + let _, dtext = test_depth st in + let text = "assumption" in + let script = [T.Apply (what, dtext ^ text)] in + mk_intros st script + +and proc_mutconstruct st what = + let _, dtext = test_depth st in + let script = [T.Apply (what, dtext)] in + mk_intros st script + +and proc_appl st what hd tl = + let proceed, dtext = test_depth st in + let script = if proceed then + let ty = get_type "TC2" st hd in + let (classes, rc) as h = Cl.classify st.context ty in + let goal_arity = match get_inner_types st what with + | None -> 0 + | Some (ity, _) -> snd (PEH.split_with_whd (st.context, cic ity)) + in + let argsno = List.length classes in + let decurry = argsno - List.length tl in + let diff = goal_arity - decurry in + if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (cic hd))); + let rec mk_synth a n = + if n < 0 then a else mk_synth (I.S.add n a) (pred n) in - mk_intros st script - | C.AMutCase (id, uri, tyno, outty, arg, cases) -> - begin match Cn.mk_ind st.context id uri tyno outty arg cases with - | _ (* None *) -> - let text = Printf.sprintf "%s" "UNEXPANDED: mutcase" in - let script = [T.Note text] in - mk_intros st script -(* | Some t -> mk_proof st t *) - end - | C.ACast (_, t, _) -> - mk_proof st t - | t -> - let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in - let script = [T.Note text] in - mk_intros st script - -and mk_bkd_proofs st synth classes ts = + let synth = mk_synth I.S.empty decurry in + let text = "" (* Printf.sprintf "%u %s" argsno (Cl.to_string h) *) in + let script = List.rev (mk_arg st hd) @ convert st what in + match rc with + | Some (i, j) -> + let classes, tl, _, where = split2_last classes tl in + let script = List.rev (mk_arg st where) @ script in + let synth = I.S.add 1 synth in + let qs = proc_bkd_proofs (next st) synth classes tl in + if is_rewrite_right hd then + script @ mk_rewrite st dtext where qs tl false + else if is_rewrite_left hd then + script @ mk_rewrite st dtext where qs tl true + else + let predicate = List.nth tl (argsno - i) in + let e = Cn.mk_pattern 0 (T.mk_arel 1 "") (* j predicate *) in + let using = Some hd in + script @ + [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] + | None -> + let qs = proc_bkd_proofs (next st) synth classes tl in + let hd = mk_exp_args hd tl classes synth in + script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] + else + [T.Apply (what, dtext)] + in + mk_intros st script + +and proc_other st what = + let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in + let script = [T.Note text] in + mk_intros st script + +and proc_proof st = function + | C.ALambda (_, name, w, t) -> proc_lambda st name w t + | C.ALetIn (_, name, v, t) as what -> proc_letin st what name v t + | C.ARel _ as what -> proc_rel st what + | C.AMutConstruct _ as what -> proc_mutconstruct st what + | C.AAppl (_, hd :: tl) as what -> proc_appl st what hd tl + | what -> proc_other st what + +and proc_bkd_proofs st synth classes ts = try let _, dtext = test_depth st in - let aux inv v = + let aux (inv, _) v = if I.overlaps synth inv then None else - if I.S.is_empty inv then Some (mk_proof st v) else + if I.S.is_empty inv then Some (proc_proof st v) else Some [T.Apply (v, dtext ^ "dependent")] - in - T.list_map2_filter aux classes ts -with Invalid_argument _ -> failwith "A2P.mk_bkd_proofs" + in + List.rev (T.list_map2_filter aux classes ts) +with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) (* object costruction *******************************************************) @@ -360,9 +348,9 @@ let is_theorem pars = List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars -let mk_obj st = function +let proc_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> - let ast = mk_proof st v in + let ast = proc_proof st v in let count = T.count_steps 0 ast in let text = Printf.sprintf "tactics: %u" count in T.Theorem (s, t, text) :: ast @ [T.Qed ""] @@ -381,7 +369,7 @@ let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = context = []; intros = [] } in - HLog.debug "Level 2 transformation"; - let steps = mk_obj st aobj in - HLog.debug "grafite rendering"; + HLog.debug "Procedural: level 2 transformation"; + let steps = proc_obj st aobj in + HLog.debug "Procedural: grafite rendering"; List.rev (T.render_steps [] steps)