X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=f39aa18bd96ee3a162baa10fa6da07ca3b6f8805;hb=55ec3926f6fbb5dba13705659fe94d0db38b2666;hp=bff721a3e7b5a247e9bca1e0f442b9202ee31a53;hpb=579d312fed0670e7528e106d2df94d72a18ee277;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index bff721a3e..f39aa18bd 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -25,7 +25,6 @@ module C = Cic module I = CicInspect -module D = Deannotate module S = CicSubstitution module TC = CicTypeChecker module Un = CicUniv @@ -35,12 +34,15 @@ module HObj = HelmLibraryObjects module A = Cic2acic module Ut = CicUtil module E = CicEnvironment -module PEH = ProofEngineHelpers module Pp = CicPp +module PEH = ProofEngineHelpers +module HEL = HExtlib +module DTI = DoubleTypeInference module Cl = ProceduralClassify module T = ProceduralTypes module Cn = ProceduralConversion +module H = ProceduralHelpers type status = { sorts : (C.id, A.sort_kind) Hashtbl.t; @@ -49,21 +51,23 @@ type status = { max_depth: int option; depth: int; context: C.context; - intros: string list + intros: string option list; + clears: string list; + clears_note: string; + case: int list; + skip_thm_and_qed : bool; } (* helpers ******************************************************************) -let cic = D.deannotate_term - let split2_last l1 l2 = try let n = pred (List.length l1) in - let before1, after1 = T.list_split n l1 in - let before2, after2 = T.list_split n l2 in + let before1, after1 = HEL.split_nth n l1 in + let before2, after2 = HEL.split_nth n l2 in before1, before2, List.hd after1, List.hd after2 with Invalid_argument _ -> failwith "A2P.split2_last" - + let string_of_head = function | C.ASort _ -> "sort" | C.AConst _ -> "const" @@ -89,6 +93,18 @@ let next st = {(clear st) with depth = succ st.depth} let add st entry intro = {st with context = entry :: st.context; intros = intro :: st.intros} +let push st = {st with case = 1 :: st.case} + +let inc st = + {st with case = match st.case with + | [] -> assert false + | hd :: tl -> succ hd :: tl + } + +let case st str = + let case = String.concat "." (List.rev_map string_of_int st.case) in + Printf.sprintf "case %s: %s" case str + let test_depth st = try let msg = Printf.sprintf "Depth %u: " st.depth in @@ -118,21 +134,7 @@ let is_fwd_rewrite_left hd tl = | C.ARel _ -> true | _ -> false else false -(* -let get_ind_name uri tno xcno = -try - let ts = match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (ts, _, _,_), _ -> ts - | _ -> assert false - in - let tname, cs = match List.nth ts tno with - | (name, _, _, cs) -> name, cs - in - match xcno with - | None -> tname - | Some cno -> fst (List.nth cs (pred cno)) -with Invalid_argument _ -> failwith "A2P.get_ind_name" -*) + let get_inner_types st v = try let id = Ut.id_of_annterm v in @@ -151,7 +153,7 @@ with Invalid_argument _ -> failwith "A2P.get_sort" *) let get_type msg st bo = try - let ty, _ = TC.type_of_aux' [] st.context (cic bo) Un.empty_ugraph in + let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.empty_ugraph in ty with e -> failwith (msg ^ ": " ^ Printexc.to_string e) @@ -162,76 +164,118 @@ let get_entry st id = | _ :: tl -> aux tl in aux st.context - + +let get_ind_names uri tno = +try + let ts = match E.get_obj Un.empty_ugraph uri with + | C.InductiveDefinition (ts, _, _, _), _ -> ts + | _ -> assert false + in + match List.nth ts tno with + | (_, _, _, cs) -> List.map fst cs +with Invalid_argument _ -> failwith "A2P.get_ind_names" + (* proof construction *******************************************************) -let unused_premise = "UNUSED" +let used_premise = C.Name "USED" -let mk_exp_args hd tl classes = +let mk_exp_args hd tl classes synth = let meta id = C.AImplicit (id, None) in let map v (cl, b) = - if I.S.mem 0 cl && b then v else meta "" + if I.overlaps synth cl && b then v else meta "" in let rec aux = function | [] -> [] | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl) in - let args = List.rev_map2 map tl classes in + let args = T.list_rev_map2 map tl classes in let args = aux args in if args = [] then hd else C.AAppl ("", hd :: args) +let mk_convert st ?name sty ety note = + let e = Cn.hole "" in + let csty, cety = H.cic sty, H.cic ety in + let _note = Printf.sprintf "%s\nSINTH: %s\nEXP: %s" + note (Pp.ppterm csty) (Pp.ppterm cety) + in + if Ut.alpha_equivalence csty cety then [(* T.Note note *)] else + match name with + | None -> [T.Change (sty, ety, None, e, ""(*note*))] + | Some (id, i) -> + begin match get_entry st id with + | C.Def _ -> assert false (* [T.ClearBody (id, note)] *) + | C.Decl _ -> [T.Change (ety, sty, Some (id, Some id), e, "" (* note *))] + end + let convert st ?name v = match get_inner_types st v with - | None -> [] - | Some (sty, ety) -> - let e = Cn.mk_pattern 0 (T.mk_arel 1 "") in - let csty, cety = cic sty, cic ety in - if Ut.alpha_equivalence csty cety then [] else - match name with - | None -> [T.Change (sty, ety, None, e, "")] - | Some (id, i) -> - begin match get_entry st id with - | C.Def _ -> [T.ClearBody (id, "")] - | C.Decl w -> - let w = S.lift i w in - if Ut.alpha_equivalence csty w then [] - else - [T.Note (Pp.ppterm csty); T.Note (Pp.ppterm w); - T.Change (sty, ety, Some (id, id), e, "")] - end - + | None -> [(*T.Note "NORMAL: NO INNER TYPES"*)] + | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL" + +let convert_elim st ?name t v pattern = + match t, get_inner_types st t, get_inner_types st v with + | _, None, _ + | _, _, None -> [(* T.Note "ELIM: NO INNER TYPES"*)] + | C.AAppl (_, hd :: tl), Some (tsty, _), Some (vsty, _) -> + let where = List.hd (List.rev tl) in + let cty = Cn.elim_inferred_type + st.context (H.cic vsty) (H.cic where) (H.cic hd) (H.cic pattern) + in + mk_convert st ?name (Cn.fake_annotate "" st.context cty) tsty "ELIM" + | _, Some _, Some _ -> assert false + let get_intro = function - | C.Anonymous -> unused_premise - | C.Name s -> s - -let mk_intros st script = - if st.intros = [] then script else - let count = List.length st.intros in - T.Intros (Some count, List.rev st.intros, "") :: script + | C.Anonymous -> None + | C.Name s -> Some s + +let mk_intros st what script = + let intros st script = + if st.intros = [] then script else + let count = List.length st.intros in + T.Intros (Some count, List.rev st.intros, "") :: script + in + let clears st script = + if true (* st.clears = [] *) then script else T.Clear (st.clears, st.clears_note) :: script + in + intros st (clears st (convert st what @ script)) let mk_arg st = function | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what | _ -> [] -let mk_fwd_rewrite st dtext name tl direction = +let mk_fwd_rewrite st dtext name tl direction t = assert (List.length tl = 6); let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in match where with - | C.ARel (_, _, _, premise) -> - let script = mk_arg st what in + | C.ARel (_, _, i, premise) as v -> let where = Some (premise, name) in - T.Rewrite (direction, what, where, e, dtext) :: script +(* let _script = convert_elim st ~name:(premise, i) t v e in *) + let script = mk_arg st what @ mk_arg st v (* @ script *) in + let st = {st with context = Cn.clear st.context premise} in + st, T.Rewrite (direction, what, where, e, dtext) :: script | _ -> assert false -let mk_rewrite st dtext what qs tl direction = +let mk_rewrite st dtext where qs tl direction t = assert (List.length tl = 5); let predicate = List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in - [T.Rewrite (direction, what, None, e, dtext); T.Branch (qs, "")] + let script = [] (* convert_elim st t t e *) in + script @ [T.Rewrite (direction, where, None, e, dtext); T.Branch (qs, "")] let rec proc_lambda st name v t = - let entry = Some (name, C.Decl (cic v)) in + let dno = DTI.does_not_occur 1 (H.cic t) in + let dno = dno && match get_inner_types st t with + | None -> true + | Some (it, et) -> + DTI.does_not_occur 1 (H.cic it) && DTI.does_not_occur 1 (H.cic et) + in + let name = match dno, name with + | true, _ -> C.Anonymous + | false, C.Anonymous -> H.mk_fresh_name st.context used_premise + | false, name -> name + in + let entry = Some (name, C.Decl (H.cic v)) in let intro = get_intro name in proc_proof (add st entry intro) t @@ -239,20 +283,20 @@ and proc_letin st what name v t = let intro = get_intro name in let proceed, dtext = test_depth st in let script = if proceed then - let hyp, rqv = match get_inner_types st v with + let st, hyp, rqv = match get_inner_types st v with | Some (ity, _) -> - let rqv = match v with + let st, rqv = match v with | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl -> - mk_fwd_rewrite st dtext intro tl true + mk_fwd_rewrite st dtext intro tl true v | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> - mk_fwd_rewrite st dtext intro tl false + mk_fwd_rewrite st dtext intro tl false v | v -> - let qs = [[T.Id ""]; proc_proof (next st) v] in - [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] + let qs = [proc_proof (next st) v; [T.Id ""]] in + st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] in - C.Decl (cic ity), rqv + st, C.Decl (H.cic ity), rqv | None -> - C.Def (cic v, None), [T.LetIn (intro, v, dtext)] + st, C.Def (H.cic v, None), [T.LetIn (intro, v, dtext)] in let entry = Some (name, hyp) in let qt = proc_proof (next (add st entry intro)) t in @@ -260,79 +304,113 @@ and proc_letin st what name v t = else [T.Apply (what, dtext)] in - mk_intros st script + mk_intros st what script and proc_rel st what = let _, dtext = test_depth st in let text = "assumption" in let script = [T.Apply (what, dtext ^ text)] in - mk_intros st script + mk_intros st what script and proc_mutconstruct st what = let _, dtext = test_depth st in let script = [T.Apply (what, dtext)] in - mk_intros st script + mk_intros st what script and proc_appl st what hd tl = let proceed, dtext = test_depth st in let script = if proceed then let ty = get_type "TC2" st hd in - let (classes, rc) as h = Cl.classify st.context ty in - let argsno = List.length classes in - let diff = argsno - List.length tl in - if diff <> 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (cic hd))); - let synth = I.S.singleton 0 in - let text = Printf.sprintf "%u %s" argsno (Cl.to_string h) in - let script = List.rev (mk_arg st hd) @ convert st what in + let classes, rc = Cl.classify st.context ty in + let goal_arity = match get_inner_types st what with + | None -> 0 + | Some (ity, _) -> snd (PEH.split_with_whd (st.context, H.cic ity)) + in + let parsno, argsno = List.length classes, List.length tl in + let decurry = parsno - argsno in + let diff = goal_arity - decurry in + if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd))); + let rec mk_synth a n = + if n < 0 then a else mk_synth (I.S.add n a) (pred n) + in + let synth = mk_synth I.S.empty decurry in + let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in + let script = List.rev (mk_arg st hd) in match rc with - | Some (i, j) -> + | Some (i, j, uri, tyno) -> let classes, tl, _, where = split2_last classes tl in let script = List.rev (mk_arg st where) @ script in let synth = I.S.add 1 synth in - let qs = proc_bkd_proofs (next st) synth classes tl in + let names = get_ind_names uri tyno in + let qs = proc_bkd_proofs (next st) synth names classes tl in if is_rewrite_right hd then - script @ mk_rewrite st dtext where qs tl false + script @ mk_rewrite st dtext where qs tl false what else if is_rewrite_left hd then - script @ mk_rewrite st dtext where qs tl true + script @ mk_rewrite st dtext where qs tl true what else - let predicate = List.nth tl (argsno - i) in - let e = Cn.mk_pattern 0 (T.mk_arel 1 "") (* j predicate *) in + let predicate = List.nth tl (parsno - i) in + let e = Cn.mk_pattern j predicate in let using = Some hd in - script @ + (* convert_elim st what what e @ *) script @ [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] | None -> - let qs = proc_bkd_proofs (next st) synth classes tl in - let hd = mk_exp_args hd tl classes in + let qs = proc_bkd_proofs (next st) synth [] classes tl in + let hd = mk_exp_args hd tl classes synth in script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] else [T.Apply (what, dtext)] in - mk_intros st script + mk_intros st what script and proc_other st what = let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in let script = [T.Note text] in - mk_intros st script - - -and proc_proof st = function - | C.ALambda (_, name, w, t) -> proc_lambda st name w t - | C.ALetIn (_, name, v, t) as what -> proc_letin st what name v t - | C.ARel _ as what -> proc_rel st what - | C.AMutConstruct _ as what -> proc_mutconstruct st what - | C.AAppl (_, hd :: tl) as what -> proc_appl st what hd tl - | what -> proc_other st what - -and proc_bkd_proofs st synth classes ts = + mk_intros st what script + +and proc_proof st t = + let f st = + let xtypes, note = match get_inner_types st t with + | Some (it, et) -> Some (H.cic it, H.cic et), + (Printf.sprintf "\nInferred: %s\nExpected: %s" + (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et))) + | None -> None, "\nNo types" + in + let context, clears = Cn.get_clears st.context (H.cic t) xtypes in + let note = Pp.ppcontext st.context ^ note in + {st with context = context; clears = clears; clears_note = note; } + in + match t with + | C.ALambda (_, name, w, t) -> proc_lambda st name w t + | C.ALetIn (_, name, v, t) as what -> proc_letin (f st) what name v t + | C.ARel _ as what -> proc_rel (f st) what + | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what + | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl + | what -> proc_other (f st) what + +and proc_bkd_proofs st synth names classes ts = try + let get_note = + let names = ref (names, push st) in + fun f -> + match !names with + | [], st -> fun _ -> f st + | "" :: tl, st -> names := tl, st; fun _ -> f st + | hd :: tl, st -> + let note = case st hd in + names := tl, inc st; + fun b -> if b then T.Note note :: f st else f st + in let _, dtext = test_depth st in let aux (inv, _) v = if I.overlaps synth inv then None else - if I.S.is_empty inv then Some (proc_proof st v) else - Some [T.Apply (v, dtext ^ "dependent")] - in - T.list_map2_filter aux classes ts -with Invalid_argument _ -> failwith "A2P.proc_bkd_proofs" + if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else + Some (fun _ -> [T.Apply (v, dtext ^ "dependent")]) + in + let ps = T.list_map2_filter aux classes ts in + let b = List.length ps > 1 in + List.rev_map (fun f -> f b) ps + +with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) (* object costruction *******************************************************) @@ -343,23 +421,29 @@ let is_theorem pars = let proc_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> let ast = proc_proof st v in - let count = T.count_steps 0 ast in - let text = Printf.sprintf "tactics: %u" count in - T.Theorem (s, t, text) :: ast @ [T.Qed ""] + let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in + let text = Printf.sprintf "tactics: %u\nnodes: %u" steps nodes in + if st.skip_thm_and_qed then ast + else T.Theorem (Some s, t, "") :: ast @ [T.Qed text] | _ -> failwith "not a theorem" (* interface functions ******************************************************) -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = +let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth +?(skip_thm_and_qed=false) prefix aobj = let st = { - sorts = ids_to_inner_sorts; - types = ids_to_inner_types; - prefix = prefix; - max_depth = depth; - depth = 0; - context = []; - intros = [] + sorts = ids_to_inner_sorts; + types = ids_to_inner_types; + prefix = prefix; + max_depth = depth; + depth = 0; + context = []; + intros = []; + clears = []; + clears_note = ""; + case = []; + skip_thm_and_qed = skip_thm_and_qed; } in HLog.debug "Procedural: level 2 transformation"; let steps = proc_obj st aobj in