X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2Facic2Procedural.ml;h=f39aa18bd96ee3a162baa10fa6da07ca3b6f8805;hb=55ec3926f6fbb5dba13705659fe94d0db38b2666;hp=dbdfb979209b146c32ee303f89dbe1f599adb096;hpb=8ae990161006978a019f0afda4ff8d56a78d1fd0;p=helm.git diff --git a/helm/software/components/acic_procedural/acic2Procedural.ml b/helm/software/components/acic_procedural/acic2Procedural.ml index dbdfb9792..f39aa18bd 100644 --- a/helm/software/components/acic_procedural/acic2Procedural.ml +++ b/helm/software/components/acic_procedural/acic2Procedural.ml @@ -25,8 +25,7 @@ module C = Cic module I = CicInspect -module D = Deannotate -module DTI = DoubleTypeInference +module S = CicSubstitution module TC = CicTypeChecker module Un = CicUniv module UM = UriManager @@ -35,13 +34,15 @@ module HObj = HelmLibraryObjects module A = Cic2acic module Ut = CicUtil module E = CicEnvironment -module PER = ProofEngineReduction +module Pp = CicPp +module PEH = ProofEngineHelpers +module HEL = HExtlib +module DTI = DoubleTypeInference -module P = ProceduralPreprocess module Cl = ProceduralClassify -module M = ProceduralMode module T = ProceduralTypes module Cn = ProceduralConversion +module H = ProceduralHelpers type status = { sorts : (C.id, A.sort_kind) Hashtbl.t; @@ -50,21 +51,23 @@ type status = { max_depth: int option; depth: int; context: C.context; - intros: string list + intros: string option list; + clears: string list; + clears_note: string; + case: int list; + skip_thm_and_qed : bool; } (* helpers ******************************************************************) -let cic = D.deannotate_term - let split2_last l1 l2 = try let n = pred (List.length l1) in - let before1, after1 = T.list_split n l1 in - let before2, after2 = T.list_split n l2 in + let before1, after1 = HEL.split_nth n l1 in + let before2, after2 = HEL.split_nth n l2 in before1, before2, List.hd after1, List.hd after2 with Invalid_argument _ -> failwith "A2P.split2_last" - + let string_of_head = function | C.ASort _ -> "sort" | C.AConst _ -> "const" @@ -90,6 +93,18 @@ let next st = {(clear st) with depth = succ st.depth} let add st entry intro = {st with context = entry :: st.context; intros = intro :: st.intros} +let push st = {st with case = 1 :: st.case} + +let inc st = + {st with case = match st.case with + | [] -> assert false + | hd :: tl -> succ hd :: tl + } + +let case st str = + let case = String.concat "." (List.rev_map string_of_int st.case) in + Printf.sprintf "case %s: %s" case str + let test_depth st = try let msg = Printf.sprintf "Depth %u: " st.depth in @@ -119,21 +134,7 @@ let is_fwd_rewrite_left hd tl = | C.ARel _ -> true | _ -> false else false -(* -let get_ind_name uri tno xcno = -try - let ts = match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (ts, _, _,_), _ -> ts - | _ -> assert false - in - let tname, cs = match List.nth ts tno with - | (name, _, _, cs) -> name, cs - in - match xcno with - | None -> tname - | Some cno -> fst (List.nth cs (pred cno)) -with Invalid_argument _ -> failwith "A2P.get_ind_name" -*) + let get_inner_types st v = try let id = Ut.id_of_annterm v in @@ -142,186 +143,274 @@ try | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st) with Not_found -> None with Invalid_argument _ -> failwith "A2P.get_inner_types" - +(* let get_inner_sort st v = try let id = Ut.id_of_annterm v in try Hashtbl.find st.sorts id with Not_found -> `Type (CicUniv.fresh()) with Invalid_argument _ -> failwith "A2P.get_sort" - +*) let get_type msg st bo = try - let ty, _ = TC.type_of_aux' [] st.context (cic bo) Un.empty_ugraph in + let ty, _ = TC.type_of_aux' [] st.context (H.cic bo) Un.empty_ugraph in ty with e -> failwith (msg ^ ": " ^ Printexc.to_string e) +let get_entry st id = + let rec aux = function + | [] -> assert false + | Some (C.Name name, e) :: _ when name = id -> e + | _ :: tl -> aux tl + in + aux st.context + +let get_ind_names uri tno = +try + let ts = match E.get_obj Un.empty_ugraph uri with + | C.InductiveDefinition (ts, _, _, _), _ -> ts + | _ -> assert false + in + match List.nth ts tno with + | (_, _, _, cs) -> List.map fst cs +with Invalid_argument _ -> failwith "A2P.get_ind_names" + (* proof construction *******************************************************) -let unused_premise = "UNUSED" +let used_premise = C.Name "USED" -let defined_premise = "DEFINED" +let mk_exp_args hd tl classes synth = + let meta id = C.AImplicit (id, None) in + let map v (cl, b) = + if I.overlaps synth cl && b then v else meta "" + in + let rec aux = function + | [] -> [] + | hd :: tl -> if hd = meta "" then aux tl else List.rev (hd :: tl) + in + let args = T.list_rev_map2 map tl classes in + let args = aux args in + if args = [] then hd else C.AAppl ("", hd :: args) + +let mk_convert st ?name sty ety note = + let e = Cn.hole "" in + let csty, cety = H.cic sty, H.cic ety in + let _note = Printf.sprintf "%s\nSINTH: %s\nEXP: %s" + note (Pp.ppterm csty) (Pp.ppterm cety) + in + if Ut.alpha_equivalence csty cety then [(* T.Note note *)] else + match name with + | None -> [T.Change (sty, ety, None, e, ""(*note*))] + | Some (id, i) -> + begin match get_entry st id with + | C.Def _ -> assert false (* [T.ClearBody (id, note)] *) + | C.Decl _ -> [T.Change (ety, sty, Some (id, Some id), e, "" (* note *))] + end let convert st ?name v = match get_inner_types st v with - | None -> [] - | Some (st, et) -> - let cst, cet = cic st, cic et in - if PER.alpha_equivalence cst cet then [] else - let e = Cn.mk_pattern 0 (T.mk_arel 1 "") in - match name with - | None -> [T.Change (st, et, None, e, "")] - | Some id -> [T.Change (st, et, Some (id, id), e, ""); T.ClearBody (id, "")] - -let get_intro name t = -try -match name with - | C.Anonymous -> unused_premise - | C.Name s -> - if DTI.does_not_occur 1 (cic t) then unused_premise else s -with Invalid_argument _ -> failwith "A2P.get_intro" + | None -> [(*T.Note "NORMAL: NO INNER TYPES"*)] + | Some (sty, ety) -> mk_convert st ?name sty ety "NORMAL" + +let convert_elim st ?name t v pattern = + match t, get_inner_types st t, get_inner_types st v with + | _, None, _ + | _, _, None -> [(* T.Note "ELIM: NO INNER TYPES"*)] + | C.AAppl (_, hd :: tl), Some (tsty, _), Some (vsty, _) -> + let where = List.hd (List.rev tl) in + let cty = Cn.elim_inferred_type + st.context (H.cic vsty) (H.cic where) (H.cic hd) (H.cic pattern) + in + mk_convert st ?name (Cn.fake_annotate "" st.context cty) tsty "ELIM" + | _, Some _, Some _ -> assert false + +let get_intro = function + | C.Anonymous -> None + | C.Name s -> Some s + +let mk_intros st what script = + let intros st script = + if st.intros = [] then script else + let count = List.length st.intros in + T.Intros (Some count, List.rev st.intros, "") :: script + in + let clears st script = + if true (* st.clears = [] *) then script else T.Clear (st.clears, st.clears_note) :: script + in + intros st (clears st (convert st what @ script)) -let mk_intros st script = -try - if st.intros = [] then script else - let count = List.length st.intros in - T.Intros (Some count, List.rev st.intros, "") :: script -with Invalid_argument _ -> failwith "A2P.mk_intros" - -let rec mk_atomic st dtext what = - if T.is_atomic what then - match what with - | C.ARel (_, _, _, name) -> convert st ~name what, what - | _ -> [], what - else - let name = defined_premise in - let script = convert st ~name what in - script @ mk_fwd_proof st dtext name what, T.mk_arel 0 name +let mk_arg st = function + | C.ARel (_, _, i, name) as what -> convert st ~name:(name, i) what + | _ -> [] -and mk_fwd_rewrite st dtext name tl direction = +let mk_fwd_rewrite st dtext name tl direction t = assert (List.length tl = 6); let what, where, predicate = List.nth tl 5, List.nth tl 3, List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in match where with - | C.ARel (_, _, _, premise) -> - let script, what = mk_atomic st dtext what in - T.Rewrite (direction, what, Some (premise, name), e, dtext) :: script + | C.ARel (_, _, i, premise) as v -> + let where = Some (premise, name) in +(* let _script = convert_elim st ~name:(premise, i) t v e in *) + let script = mk_arg st what @ mk_arg st v (* @ script *) in + let st = {st with context = Cn.clear st.context premise} in + st, T.Rewrite (direction, what, where, e, dtext) :: script | _ -> assert false -and mk_rewrite st dtext script t what qs tl direction = +let mk_rewrite st dtext where qs tl direction t = assert (List.length tl = 5); let predicate = List.nth tl 2 in let e = Cn.mk_pattern 1 predicate in - List.rev script @ convert st t @ - [T.Rewrite (direction, what, None, e, dtext); T.Branch (qs, "")] - -and mk_fwd_proof st dtext name = function - | C.ALetIn (_, n, v, t) -> - let entry = Some (n, C.Def (cic v, None)) in - let intro = get_intro n t in - let qt = mk_fwd_proof (add st entry intro) dtext name t in - let qv = mk_fwd_proof st "" intro v in - List.append qt qv - | C.AAppl (_, hd :: tl) as v -> - if is_fwd_rewrite_right hd tl then mk_fwd_rewrite st dtext name tl true else - if is_fwd_rewrite_left hd tl then mk_fwd_rewrite st dtext name tl false else - let ty = get_type "TC1" st hd in - begin match get_inner_types st v with - | Some (ity, _) when M.bkd st.context ty -> - let qs = [[T.Id ""]; mk_proof (next st) v] in - [T.Branch (qs, ""); T.Cut (name, ity, dtext)] - | _ -> - let (classes, rc) as h = Cl.classify st.context ty in - let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - [T.LetIn (name, v, dtext ^ text)] - end - | C.AMutCase _ -> assert false - | C.ACast _ -> assert false - | v -> - match get_inner_types st v with + let script = [] (* convert_elim st t t e *) in + script @ [T.Rewrite (direction, where, None, e, dtext); T.Branch (qs, "")] + +let rec proc_lambda st name v t = + let dno = DTI.does_not_occur 1 (H.cic t) in + let dno = dno && match get_inner_types st t with + | None -> true + | Some (it, et) -> + DTI.does_not_occur 1 (H.cic it) && DTI.does_not_occur 1 (H.cic et) + in + let name = match dno, name with + | true, _ -> C.Anonymous + | false, C.Anonymous -> H.mk_fresh_name st.context used_premise + | false, name -> name + in + let entry = Some (name, C.Decl (H.cic v)) in + let intro = get_intro name in + proc_proof (add st entry intro) t + +and proc_letin st what name v t = + let intro = get_intro name in + let proceed, dtext = test_depth st in + let script = if proceed then + let st, hyp, rqv = match get_inner_types st v with | Some (ity, _) -> - let qs = [[T.Id ""]; mk_proof (next st) v] in - [T.Branch (qs, ""); T.Cut (name, ity, dtext)] - | _ -> - [T.LetIn (name, v, dtext)] - -and mk_proof st = function - | C.ALambda (_, name, v, t) -> - let entry = Some (name, C.Decl (cic v)) in - let intro = get_intro name t in - mk_proof (add st entry intro) t - | C.ALetIn (_, name, v, t) as what -> - let proceed, dtext = test_depth st in - let script = if proceed then - let entry = Some (name, C.Def (cic v, None)) in - let intro = get_intro name t in - let q = mk_proof (next (add st entry intro)) t in - List.rev_append (mk_fwd_proof st dtext intro v) q - else - [T.Apply (what, dtext)] + let st, rqv = match v with + | C.AAppl (_, hd :: tl) when is_fwd_rewrite_right hd tl -> + mk_fwd_rewrite st dtext intro tl true v + | C.AAppl (_, hd :: tl) when is_fwd_rewrite_left hd tl -> + mk_fwd_rewrite st dtext intro tl false v + | v -> + let qs = [proc_proof (next st) v; [T.Id ""]] in + st, [T.Branch (qs, ""); T.Cut (intro, ity, dtext)] + in + st, C.Decl (H.cic ity), rqv + | None -> + st, C.Def (H.cic v, None), [T.LetIn (intro, v, dtext)] + in + let entry = Some (name, hyp) in + let qt = proc_proof (next (add st entry intro)) t in + List.rev_append rqv qt + else + [T.Apply (what, dtext)] + in + mk_intros st what script + +and proc_rel st what = + let _, dtext = test_depth st in + let text = "assumption" in + let script = [T.Apply (what, dtext ^ text)] in + mk_intros st what script + +and proc_mutconstruct st what = + let _, dtext = test_depth st in + let script = [T.Apply (what, dtext)] in + mk_intros st what script + +and proc_appl st what hd tl = + let proceed, dtext = test_depth st in + let script = if proceed then + let ty = get_type "TC2" st hd in + let classes, rc = Cl.classify st.context ty in + let goal_arity = match get_inner_types st what with + | None -> 0 + | Some (ity, _) -> snd (PEH.split_with_whd (st.context, H.cic ity)) in - mk_intros st script - | C.ARel _ as what -> - let _, dtext = test_depth st in - let text = "assumption" in - let script = [T.Apply (what, dtext ^ text)] in - mk_intros st script - | C.AMutConstruct _ as what -> - let _, dtext = test_depth st in - let script = [T.Apply (what, dtext)] in - mk_intros st script - | C.AAppl (_, hd :: tl) as t -> - let proceed, dtext = test_depth st in - let script = if proceed then - let ty = get_type "TC2" st hd in - let (classes, rc) as h = Cl.classify st.context ty in - let premises, _ = P.split st.context ty in - assert (List.length classes - List.length tl = 0); - let synth = I.S.singleton 0 in - let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - match rc with - | Some (i, j) when i > 1 && i <= List.length classes && M.is_eliminator premises -> - let classes, tl, _, what = split2_last classes tl in - let script, what = mk_atomic st dtext what in - let synth = I.S.add 1 synth in - let qs = mk_bkd_proofs (next st) synth classes tl in - if is_rewrite_right hd then - mk_rewrite st dtext script t what qs tl false - else if is_rewrite_left hd then - mk_rewrite st dtext script t what qs tl true - else - let l = succ (List.length tl) in - let predicate = List.nth tl (l - i) in - let e = Cn.mk_pattern j predicate in - let using = Some hd in - List.rev script @ convert st t @ - [T.Elim (what, using, e, dtext ^ text); T.Branch (qs, "")] - | _ -> - let qs = mk_bkd_proofs (next st) synth classes tl in - let script, hd = mk_atomic st dtext hd in - List.rev script @ convert st t @ - [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] - else - [T.Apply (t, dtext)] + let parsno, argsno = List.length classes, List.length tl in + let decurry = parsno - argsno in + let diff = goal_arity - decurry in + if diff < 0 then failwith (Printf.sprintf "NOT TOTAL: %i %s |--- %s" diff (Pp.ppcontext st.context) (Pp.ppterm (H.cic hd))); + let rec mk_synth a n = + if n < 0 then a else mk_synth (I.S.add n a) (pred n) in - mk_intros st script - | C.AMutCase _ -> assert false - | C.ACast _ -> assert false - | t -> - let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in - let script = [T.Note text] in - mk_intros st script - -and mk_bkd_proofs st synth classes ts = + let synth = mk_synth I.S.empty decurry in + let text = "" (* Printf.sprintf "%u %s" parsno (Cl.to_string h) *) in + let script = List.rev (mk_arg st hd) in + match rc with + | Some (i, j, uri, tyno) -> + let classes, tl, _, where = split2_last classes tl in + let script = List.rev (mk_arg st where) @ script in + let synth = I.S.add 1 synth in + let names = get_ind_names uri tyno in + let qs = proc_bkd_proofs (next st) synth names classes tl in + if is_rewrite_right hd then + script @ mk_rewrite st dtext where qs tl false what + else if is_rewrite_left hd then + script @ mk_rewrite st dtext where qs tl true what + else + let predicate = List.nth tl (parsno - i) in + let e = Cn.mk_pattern j predicate in + let using = Some hd in + (* convert_elim st what what e @ *) script @ + [T.Elim (where, using, e, dtext ^ text); T.Branch (qs, "")] + | None -> + let qs = proc_bkd_proofs (next st) synth [] classes tl in + let hd = mk_exp_args hd tl classes synth in + script @ [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] + else + [T.Apply (what, dtext)] + in + mk_intros st what script + +and proc_other st what = + let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head what) in + let script = [T.Note text] in + mk_intros st what script + +and proc_proof st t = + let f st = + let xtypes, note = match get_inner_types st t with + | Some (it, et) -> Some (H.cic it, H.cic et), + (Printf.sprintf "\nInferred: %s\nExpected: %s" + (Pp.ppterm (H.cic it)) (Pp.ppterm (H.cic et))) + | None -> None, "\nNo types" + in + let context, clears = Cn.get_clears st.context (H.cic t) xtypes in + let note = Pp.ppcontext st.context ^ note in + {st with context = context; clears = clears; clears_note = note; } + in + match t with + | C.ALambda (_, name, w, t) -> proc_lambda st name w t + | C.ALetIn (_, name, v, t) as what -> proc_letin (f st) what name v t + | C.ARel _ as what -> proc_rel (f st) what + | C.AMutConstruct _ as what -> proc_mutconstruct (f st) what + | C.AAppl (_, hd :: tl) as what -> proc_appl (f st) what hd tl + | what -> proc_other (f st) what + +and proc_bkd_proofs st synth names classes ts = try + let get_note = + let names = ref (names, push st) in + fun f -> + match !names with + | [], st -> fun _ -> f st + | "" :: tl, st -> names := tl, st; fun _ -> f st + | hd :: tl, st -> + let note = case st hd in + names := tl, inc st; + fun b -> if b then T.Note note :: f st else f st + in let _, dtext = test_depth st in - let aux inv v = + let aux (inv, _) v = if I.overlaps synth inv then None else - if I.S.is_empty inv then Some (mk_proof st v) else - Some [T.Apply (v, dtext ^ "dependent")] - in - T.list_map2_filter aux classes ts -with Invalid_argument _ -> failwith "A2P.mk_bkd_proofs" + if I.S.is_empty inv then Some (get_note (fun st -> proc_proof st v)) else + Some (fun _ -> [T.Apply (v, dtext ^ "dependent")]) + in + let ps = T.list_map2_filter aux classes ts in + let b = List.length ps > 1 in + List.rev_map (fun f -> f b) ps + +with Invalid_argument s -> failwith ("A2P.proc_bkd_proofs: " ^ s) (* object costruction *******************************************************) @@ -329,28 +418,34 @@ let is_theorem pars = List.mem (`Flavour `Theorem) pars || List.mem (`Flavour `Fact) pars || List.mem (`Flavour `Remark) pars || List.mem (`Flavour `Lemma) pars -let mk_obj st = function +let proc_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> - let ast = mk_proof st v in - let count = T.count_steps 0 ast in - let text = Printf.sprintf "tactics: %u" count in - T.Theorem (s, t, text) :: ast @ [T.Qed ""] + let ast = proc_proof st v in + let steps, nodes = T.count_steps 0 ast, T.count_nodes 0 ast in + let text = Printf.sprintf "tactics: %u\nnodes: %u" steps nodes in + if st.skip_thm_and_qed then ast + else T.Theorem (Some s, t, "") :: ast @ [T.Qed text] | _ -> failwith "not a theorem" (* interface functions ******************************************************) -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = +let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth +?(skip_thm_and_qed=false) prefix aobj = let st = { - sorts = ids_to_inner_sorts; - types = ids_to_inner_types; - prefix = prefix; - max_depth = depth; - depth = 0; - context = []; - intros = [] + sorts = ids_to_inner_sorts; + types = ids_to_inner_types; + prefix = prefix; + max_depth = depth; + depth = 0; + context = []; + intros = []; + clears = []; + clears_note = ""; + case = []; + skip_thm_and_qed = skip_thm_and_qed; } in - HLog.debug "Level 2 transformation"; - let steps = mk_obj st aobj in - HLog.debug "grafite rendering"; + HLog.debug "Procedural: level 2 transformation"; + let steps = proc_obj st aobj in + HLog.debug "Procedural: grafite rendering"; List.rev (T.render_steps [] steps)