X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2FproceduralConversion.ml;h=80aae9e7f3668b83fcee3378d7cb148174b5c31c;hb=d178a0a4809c0c6693b2c00ab7359a1b414cd805;hp=3bee4dd57e0cdebc9c7bbb3298b159ec964d5b36;hpb=8a4fdd910446fb3635719d979613aad2bd56db16;p=helm.git diff --git a/helm/software/components/acic_procedural/proceduralConversion.ml b/helm/software/components/acic_procedural/proceduralConversion.ml index 3bee4dd57..80aae9e7f 100644 --- a/helm/software/components/acic_procedural/proceduralConversion.ml +++ b/helm/software/components/acic_procedural/proceduralConversion.ml @@ -29,41 +29,17 @@ module Un = CicUniv module TC = CicTypeChecker module D = Deannotate module UM = UriManager - -module T = ProceduralTypes -module Cl = ProceduralClassify -module M = ProceduralMode +module Rd = CicReduction (* helpers ******************************************************************) let cic = D.deannotate_term -let get_ind_type uri tyno = - match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (tys, _, lpsno, _), _ -> lpsno, List.nth tys tyno - | _ -> assert false - -let get_default_eliminator context uri tyno ty = - let _, (name, _, _, _) = get_ind_type uri tyno in - let sort, _ = TC.type_of_aux' [] context ty Un.empty_ugraph in - let ext = match sort with - | C.Sort C.Prop -> "_ind" - | C.Sort C.Set -> "_rec" - | C.Sort C.CProp -> "_rec" - | C.Sort (C.Type _) -> "_rect" - | C.Meta (_,_) -> assert false - | _ -> assert false - in - let buri = UM.buri_of_uri uri in - let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in - C.Const (uri, []) - let rec list_sub start length = function | _ :: tl when start > 0 -> list_sub (pred start) length tl | hd :: tl when length > 0 -> hd :: list_sub start (pred length) tl | _ -> [] - (* proof construction *******************************************************) let lift k n = @@ -98,93 +74,20 @@ let lift k n = in lift_term k -let fake_annotate c = - let get_binder c m = - try match List.nth c (pred m) with - | Some (C.Name s, _) -> s - | _ -> assert false - with - | Invalid_argument _ -> assert false - in - let mk_decl n v = Some (n, C.Decl v) in - let mk_def n v = Some (n, C.Def (v, None)) in - let mk_fix (name, _, _, bo) = mk_def (C.Name name) bo in - let mk_cofix (name, _, bo) = mk_def (C.Name name) bo in - let rec ann_xns c (uri, t) = uri, ann_term c t - and ann_ms c = function - | None -> None - | Some t -> Some (ann_term c t) - and ann_fix newc c (name, i, ty, bo) = - "", name, i, ann_term c ty, ann_term (List.rev_append newc c) bo - and ann_cofix newc c (name, ty, bo) = - "", name, ann_term c ty, ann_term (List.rev_append newc c) bo - and ann_term c = function - | C.Sort sort -> C.ASort ("", sort) - | C.Implicit ann -> C.AImplicit ("", ann) - | C.Rel m -> C.ARel ("", "", m, get_binder c m) - | C.Const (uri, xnss) -> C.AConst ("", uri, List.map (ann_xns c) xnss) - | C.Var (uri, xnss) -> C.AVar ("", uri, List.map (ann_xns c) xnss) - | C.MutInd (uri, tyno, xnss) -> C.AMutInd ("", uri, tyno, List.map (ann_xns c) xnss) - | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct ("", uri,tyno,consno, List.map (ann_xns c) xnss) - | C.Meta (i, mss) -> C.AMeta("", i, List.map (ann_ms c) mss) - | C.Appl ts -> C.AAppl ("", List.map (ann_term c) ts) - | C.Cast (te, ty) -> C.ACast ("", ann_term c te, ann_term c ty) - | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase ("", sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) - | C.Prod (n, s, t) -> C.AProd ("", n, ann_term c s, ann_term (mk_decl n s :: c) t) - | C.Lambda (n, s, t) -> C.ALambda ("", n, ann_term c s, ann_term (mk_decl n s :: c) t) - | C.LetIn (n, s, t) -> C.ALetIn ("", n, ann_term c s, ann_term (mk_def n s :: c) t) - | C.Fix (i, fl) -> C.AFix ("", i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) - | C.CoFix (i, fl) -> C.ACoFix ("", i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) - in - ann_term c - let clear_absts m = let rec aux k n = function + | C.AImplicit (_, None) as t -> t | C.ALambda (id, s, v, t) when k > 0 -> C.ALambda (id, s, v, aux (pred k) n t) - | C.ALambda (_, _, _, t) when n > 0 -> + | C.ALambda (_, _, _, t) when n > 0 -> aux 0 (pred n) (lift 1 (-1) t) - | t when n > 0 -> assert false - | t -> t + | t when n > 0 -> + Printf.eprintf "CLEAR: %u %s\n" n (CicPp.ppterm (cic t)); + assert false + | t -> t in aux m -let mk_ind context id uri tyno outty arg cases = -try - let sort_disp = 0 in - let is_recursive = function - | C.MutInd (u, no, _) -> UM.eq u uri && no = tyno - | _ -> false - in - let lpsno, (_, _, _, constructors) = get_ind_type uri tyno in - let inty, _ = TC.type_of_aux' [] context (cic arg) Un.empty_ugraph in - let ps = match inty with - | C.MutInd _ -> [] - | C.Appl (C.MutInd _ :: args) -> List.map (fake_annotate context) args - | _ -> assert false - in - let lps, rps = T.list_split lpsno ps in - let rpsno = List.length rps in - let eliminator = get_default_eliminator context uri tyno inty in - let eliminator = fake_annotate context eliminator in - let predicate = clear_absts rpsno (1 - sort_disp) outty in - let map2 case (_, cty) = - let map (h, case, k) premise = - if h > 0 then pred h, lift k 1 case, k else - if is_recursive premise then 0, lift (succ k) 1 case, succ k else - 0, case, succ k - in - let premises, _ = Cl.split context cty in - let _, lifted_case, _ = - List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises)) - in - lifted_case - in - let lifted_cases = List.map2 map2 cases constructors in - let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in - Some (C.AAppl (id, args)) -with Invalid_argument _ -> failwith "PCn.mk_ind" - let hole id = C.AImplicit (id, Some `Hole) let meta id = C.AImplicit (id, None) @@ -212,7 +115,7 @@ let generalize n = | C.AMutConstruct (id, _, _, _, _) | C.AMeta (id, _, _) -> meta id | C.ARel (id, _, m, _) -> - if m = succ (n - k) then hole id else meta id + if succ (k - n) <= m && m <= k then hole id else meta id | C.AAppl (id, ts) -> let ts = List.map (gen_term k) ts in if is_meta ts then meta id else C.AAppl (id, ts) @@ -236,8 +139,6 @@ let generalize n = in gen_term 0 -let mk_pattern rps predicate = - let sort_disp = 0 in - let rpsno = List.length rps in - let body = generalize (rpsno + sort_disp) predicate in - clear_absts 0 (rpsno + sort_disp) body +let mk_pattern psno predicate = + let body = generalize psno predicate in + clear_absts 0 psno body