X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2FproceduralConversion.ml;h=e73ccfe596b0b65936fb71f7699b8f82093f9498;hb=HEAD;hp=555523a621f2929f46d926f396bb66458f45c43b;hpb=cea3a50f515d1e39467073d2b447a9ddfa1a4852;p=helm.git diff --git a/helm/software/components/acic_procedural/proceduralConversion.ml b/helm/software/components/acic_procedural/proceduralConversion.ml index 555523a62..e73ccfe59 100644 --- a/helm/software/components/acic_procedural/proceduralConversion.ml +++ b/helm/software/components/acic_procedural/proceduralConversion.ml @@ -26,129 +26,267 @@ module C = Cic module E = CicEnvironment module Un = CicUniv -module TC = CicTypeChecker -module D = Deannotate +module TC = CicTypeChecker module UM = UriManager +module Rd = CicReduction +module PEH = ProofEngineHelpers +module PT = PrimitiveTactics +module DTI = DoubleTypeInference -module T = ProceduralTypes +module H = ProceduralHelpers (* helpers ******************************************************************) -let cic = D.deannotate_term - -let get_ind_type uri tyno = - match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (tys, _, lpsno, _), _ -> lpsno, List.nth tys tyno - | _ -> assert false - -let get_default_eliminator context uri tyno ty = - let _, (name, _, _, _) = get_ind_type uri tyno in - let sort, _ = TC.type_of_aux' [] context ty Un.empty_ugraph in - let ext = match sort with - | C.Sort C.Prop -> "_ind" - | C.Sort C.Set -> "_rec" - | C.Sort C.CProp -> "_rec" - | C.Sort (C.Type _) -> "_rect" - | C.Meta (_,_) -> assert false - | _ -> assert false - in - let buri = UM.buri_of_uri uri in - let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in - C.Const (uri, []) - +let rec list_sub start length = function + | _ :: tl when start > 0 -> list_sub (pred start) length tl + | hd :: tl when length > 0 -> hd :: list_sub start (pred length) tl + | _ -> [] + (* proof construction *******************************************************) -let rec need_whd i = function - | C.ACast (_, t, _) -> need_whd i t - | C.AProd (_, _, _, t) when i > 0 -> need_whd (pred i) t - | _ when i > 0 -> true - | _ -> false - -let lift k n = - let rec lift_xns k (uri, t) = uri, lift_term k t - and lift_ms k = function +let iter f k = + let rec iter_xns k (uri, t) = uri, iter_term k t + and iter_ms k = function | None -> None - | Some t -> Some (lift_term k t) - and lift_fix len k (id, name, i, ty, bo) = - id, name, i, lift_term k ty, lift_term (k + len) bo - and lift_cofix len k (id, name, ty, bo) = - id, name, lift_term k ty, lift_term (k + len) bo - and lift_term k = function + | Some t -> Some (iter_term k t) + and iter_fix len k (id, name, i, ty, bo) = + id, name, i, iter_term k ty, iter_term (k + len) bo + and iter_cofix len k (id, name, ty, bo) = + id, name, iter_term k ty, iter_term (k + len) bo + and iter_term k = function | C.ASort _ as t -> t | C.AImplicit _ as t -> t - | C.ARel (id, rid, m, b) as t -> if m < k then t else C.ARel (id, rid, m + n, b) - | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (lift_xns k) xnss) - | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (lift_xns k) xnss) - | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (lift_xns k) xnss) - | C.AMutConstruct (id, uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (lift_xns k) xnss) - | C.AMeta (id, i, mss) -> C.AMeta(id, i, List.map (lift_ms k) mss) - | C.AAppl (id, ts) -> C.AAppl (id, List.map (lift_term k) ts) - | C.ACast (id, te, ty) -> C.ACast (id, lift_term k te, lift_term k ty) - | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, lift_term k outty, lift_term k t, List.map (lift_term k) pl) - | C.AProd (id, n, s, t) -> C.AProd (id, n, lift_term k s, lift_term (succ k) t) - | C.ALambda (id, n, s, t) -> C.ALambda (id, n, lift_term k s, lift_term (succ k) t) - | C.ALetIn (id, n, s, t) -> C.ALetIn (id, n, lift_term k s, lift_term (succ k) t) - | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (lift_fix (List.length fl) k) fl) - | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (lift_cofix (List.length fl) k) fl) + | C.ARel (id, rid, m, b) as t -> + if m < k then t else f k id rid m b + | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (iter_xns k) xnss) + | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (iter_xns k) xnss) + | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (iter_xns k) xnss) + | C.AMutConstruct (id, uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (iter_xns k) xnss) + | C.AMeta (id, i, mss) -> C.AMeta(id, i, List.map (iter_ms k) mss) + | C.AAppl (id, ts) -> C.AAppl (id, List.map (iter_term k) ts) + | C.ACast (id, te, ty) -> C.ACast (id, iter_term k te, iter_term k ty) + | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, iter_term k outty, iter_term k t, List.map (iter_term k) pl) + | C.AProd (id, n, s, t) -> C.AProd (id, n, iter_term k s, iter_term (succ k) t) + | C.ALambda (id, n, s, t) -> C.ALambda (id, n, iter_term k s, iter_term (succ k) t) + | C.ALetIn (id, n, ty, s, t) -> C.ALetIn (id, n, iter_term k ty, iter_term k s, iter_term (succ k) t) + | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (iter_fix (List.length fl) k) fl) + | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (iter_cofix (List.length fl) k) fl) in - lift_term k + iter_term k -let fake_annotate c = +let lift k n = + let f _ id rid m b = + if m + n > 0 then C.ARel (id, rid, m + n, b) else + begin + HLog.error (Printf.sprintf "ProceduralConversion.lift: %i %i" m n); + assert false + end + in + iter f k + +let subst k v = + let f k id rid m b = + if m = k then lift 1 (pred k) v else C.ARel (id, rid, pred m, b) + in + iter f k + +let fake_annotate id c = let get_binder c m = try match List.nth c (pred m) with - | Some (C.Name s, _) -> s - | _ -> assert false + | Some (C.Name s, _) -> s + | _ -> assert false with - | Invalid_argument _ -> assert false + | Invalid_argument _ -> assert false in let mk_decl n v = Some (n, C.Decl v) in - let mk_def n v = Some (n, C.Def (v, None)) in - let mk_fix (name, _, _, bo) = mk_def (C.Name name) bo in - let mk_cofix (name, _, bo) = mk_def (C.Name name) bo in + let mk_def n v ty = Some (n, C.Def (v, ty)) in + let mk_fix (name, _, ty, bo) = mk_def (C.Name name) bo ty in + let mk_cofix (name, ty, bo) = mk_def (C.Name name) bo ty in let rec ann_xns c (uri, t) = uri, ann_term c t and ann_ms c = function - | None -> None + | None -> None | Some t -> Some (ann_term c t) and ann_fix newc c (name, i, ty, bo) = - "", name, i, ann_term c ty, ann_term (List.rev_append newc c) bo + id, name, i, ann_term c ty, ann_term (List.rev_append newc c) bo and ann_cofix newc c (name, ty, bo) = - "", name, ann_term c ty, ann_term (List.rev_append newc c) bo + id, name, ann_term c ty, ann_term (List.rev_append newc c) bo and ann_term c = function - | C.Sort sort -> C.ASort ("", sort) - | C.Implicit ann -> C.AImplicit ("", ann) - | C.Rel m -> C.ARel ("", "", m, get_binder c m) - | C.Const (uri, xnss) -> C.AConst ("", uri, List.map (ann_xns c) xnss) - | C.Var (uri, xnss) -> C.AVar ("", uri, List.map (ann_xns c) xnss) - | C.MutInd (uri, tyno, xnss) -> C.AMutInd ("", uri, tyno, List.map (ann_xns c) xnss) - | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct ("", uri,tyno,consno, List.map (ann_xns c) xnss) - | C.Meta (i, mss) -> C.AMeta("", i, List.map (ann_ms c) mss) - | C.Appl ts -> C.AAppl ("", List.map (ann_term c) ts) - | C.Cast (te, ty) -> C.ACast ("", ann_term c te, ann_term c ty) - | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase ("", sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) - | C.Prod (n, s, t) -> C.AProd ("", n, ann_term c s, ann_term (mk_decl n s :: c) t) - | C.Lambda (n, s, t) -> C.ALambda ("", n, ann_term c s, ann_term (mk_decl n s :: c) t) - | C.LetIn (n, s, t) -> C.ALetIn ("", n, ann_term c s, ann_term (mk_def n s :: c) t) - | C.Fix (i, fl) -> C.AFix ("", i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) - | C.CoFix (i, fl) -> C.ACoFix ("", i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) + | C.Sort sort -> C.ASort (id, sort) + | C.Implicit ann -> C.AImplicit (id, ann) + | C.Rel m -> C.ARel (id, id, m, get_binder c m) + | C.Const (uri, xnss) -> C.AConst (id, uri, List.map (ann_xns c) xnss) + | C.Var (uri, xnss) -> C.AVar (id, uri, List.map (ann_xns c) xnss) + | C.MutInd (uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (ann_xns c) xnss) + | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (ann_xns c) xnss) + | C.Meta (i, mss) -> C.AMeta(id, i, List.map (ann_ms c) mss) + | C.Appl ts -> C.AAppl (id, List.map (ann_term c) ts) + | C.Cast (te, ty) -> C.ACast (id, ann_term c te, ann_term c ty) + | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) + | C.Prod (n, s, t) -> C.AProd (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) + | C.Lambda (n, s, t) -> C.ALambda (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) + | C.LetIn (n, s, ty, t) -> C.ALetIn (id, n, ann_term c s, ann_term c ty, ann_term (mk_def n s ty :: c) t) + | C.Fix (i, fl) -> C.AFix (id, i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) + | C.CoFix (i, fl) -> C.ACoFix (id, i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) in ann_term c -let rec add_abst n t = - if n <= 0 then t else - let t = C.ALambda ("", C.Anonymous, C.AImplicit ("", None), lift 0 1 t) in - add_abst (pred n) t - -let mk_ind context id uri tyno outty arg cases = - let lpsno, (_, _, arity, constructors) = get_ind_type uri tyno in - let inty, _ = TC.type_of_aux' [] context (cic arg) Un.empty_ugraph in - let ps = match inty with - | C.MutInd _ -> [] - | C.Appl (C.MutInd _ :: args) -> List.map (fake_annotate context) args - | _ -> assert false +let mk_arel k = C.ARel ("", "", k, "") + +let mk_aappl ts = C.AAppl ("", ts) + +let rec clear_absts f n k = function + | t when n = 0 -> f k t + | C.ALambda (_, _, _, t) -> clear_absts f (pred n) (succ k) t + | t -> + let u = match mk_aappl [lift (succ k) 1 t; mk_arel (succ k)] with + | C.AAppl (_, [ C.AAppl (id, ts); t]) -> C.AAppl (id, ts @ [t]) + | t -> t + in + clear_absts f (pred n) (succ k) u + +let hole id = C.AImplicit (id, Some `Hole) + +let meta id = C.AImplicit (id, None) + +let anon = C.Anonymous + +let generalize n = + let is_meta = + let map b = function + | C.AImplicit (_, None) when b -> b + | _ -> false + in + List.fold_left map true + in + let rec gen_fix len k (id, name, i, ty, bo) = + id, name, i, gen_term k ty, gen_term (k + len) bo + and gen_cofix len k (id, name, ty, bo) = + id, name, gen_term k ty, gen_term (k + len) bo + and gen_term k = function + | C.ASort (id, _) + | C.AImplicit (id, _) + | C.AConst (id, _, _) + | C.AVar (id, _, _) + | C.AMutInd (id, _, _, _) + | C.AMutConstruct (id, _, _, _, _) + | C.AMeta (id, _, _) -> meta id + | C.ARel (id, _, m, _) -> + if succ (k - n) <= m && m <= k then hole id else meta id + | C.AAppl (id, ts) -> + let ts = List.map (gen_term k) ts in + if is_meta ts then meta id else C.AAppl (id, ts) + | C.ACast (id, te, ty) -> + let te, ty = gen_term k te, gen_term k ty in + if is_meta [te; ty] then meta id else C.ACast (id, te, ty) + | C.AMutCase (id, sp, i, outty, t, pl) -> + let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in + if is_meta (outty :: t :: pl) then meta id else hole id (* C.AMutCase (id, sp, i, outty, t, pl) *) + | C.AProd (id, _, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.AProd (id, anon, s, t) + | C.ALambda (id, _, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.ALambda (id, anon, s, t) + | C.ALetIn (id, _, s, ty, t) -> + let s, ty, t = gen_term k s, gen_term k ty, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.ALetIn (id, anon, s, ty, t) + | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (gen_fix (List.length fl) k) fl) + | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (gen_cofix (List.length fl) k) fl) + in + gen_term + +let convert g ity k predicate = + let rec aux = function + | C.ALambda (_, _, b, ity), C.ALambda (id, n, u, pred) -> + C.ALambda (id, n, aux (b, u), aux (ity, pred)) + | C.AProd (_, _, b, ity), C.AProd (id, n, u, pred) -> + C.AProd (id, n, aux (b, u), aux (ity, pred)) + | C.ALetIn (_, _, a, b, ity), C.ALetIn (id, n, v, u, pred) -> + C.ALetIn (id, n, aux (a, v), aux (b, u), aux (ity, pred)) + | C.AAppl (_, bs), C.AAppl (id, us) when List.length bs = List.length us -> + let map b u = aux (b,u) in + C.AAppl (id, List.map2 map bs us) + | C.ACast (_, ity, b), C.ACast (id, pred, u) -> + C.ACast (id, aux (ity, pred), aux (b, u)) + | ity, C.AAppl (_, C.ALambda (_, _, _, pred) :: v :: []) -> + aux (ity, subst 1 v pred) + | ity, C.AAppl (id, C.ALambda (_, _, _, pred) :: v :: vs) -> + aux (ity, C.AAppl (id, subst 1 v pred :: vs)) + | _, pred -> pred + in + g k (aux (ity, predicate)) + +let mk_pattern psno ity predicate = + clear_absts (convert (generalize psno) ity) psno 0 predicate + +let beta v = function + | C.ALambda (_, _, _, t) -> subst 1 v t + | _ -> assert false + +let get_clears c p xtypes = + let meta = C.Implicit None in + let rec aux c names p it et = function + | [] -> + List.rev c, List.rev names + | Some (C.Name name as n, C.Decl v) as hd :: tl -> + let hd, names, v = + if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then + Some (C.Anonymous, C.Decl v), name :: names, meta + else + hd, names, v + in + let p = C.Lambda (n, v, p) in + let it = C.Prod (n, v, it) in + let et = C.Prod (n, v, et) in + aux (hd :: c) names p it et tl + | Some (C.Name name as n, C.Def (v, x)) as hd :: tl -> + let hd, names, v = + if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then + Some (C.Anonymous, C.Def (v, x)), name :: names, meta + else + hd, names, v + in + let p = C.LetIn (n, v, x, p) in + let it = C.LetIn (n, v, x, it) in + let et = C.LetIn (n, v, x, et) in + aux (hd :: c) names p it et tl + | Some (C.Anonymous as n, C.Decl v) as hd :: tl -> + let p = C.Lambda (n, meta, p) in + let it = C.Lambda (n, meta, it) in + let et = C.Lambda (n, meta, et) in + aux (hd :: c) names p it et tl + | Some (C.Anonymous as n, C.Def (v, _)) as hd :: tl -> + let p = C.LetIn (n, meta, meta, p) in + let it = C.LetIn (n, meta, meta, it) in + let et = C.LetIn (n, meta, meta, et) in + aux (hd :: c) names p it et tl + | None :: tl -> assert false + in + match xtypes with + | Some (it, et) -> aux [] [] p it et c + | None -> c, [] + +let clear c hyp = + let rec aux c = function + | [] -> List.rev c + | Some (C.Name name, entry) :: tail when name = hyp -> + aux (Some (C.Anonymous, entry) :: c) tail + | entry :: tail -> aux (entry :: c) tail + in + aux [] c +(* +let elim_inferred_type context goal arg using cpattern = + let metasenv, ugraph = [], Un.default_ugraph in + let ety = H.get_type "elim_inferred_type" context using in + let _splits, args_no = PEH.split_with_whd (context, ety) in + let _metasenv, _subst, predicate, _arg, actual_args = + PT.mk_predicate_for_elim + ~context ~metasenv ~subst:[] ~ugraph ~goal ~arg ~using ~cpattern ~args_no in - let lps, rps = T.list_split lpsno ps in - let eliminator = get_default_eliminator context uri tyno inty in - let arg_ref = T.mk_arel 0 "" in - let body = C.AMutCase (id, uri, tyno, outty, arg_ref, cases) in - let predicate = add_abst (succ (List.length rps)) body in - None + let ty = C.Appl (predicate :: actual_args) in + let upto = List.length actual_args in + Rd.head_beta_reduce ~delta:false ~upto ty +*) +let does_not_occur = function + | C.AImplicit (_, None) -> true + | _ -> false