X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2FproceduralConversion.ml;h=e73ccfe596b0b65936fb71f7699b8f82093f9498;hb=HEAD;hp=e42ad490eee970aee950dc98be1effcd0f0d99d1;hpb=128ea02422e0cc4254ea3f8e4b0c5248c7182479;p=helm.git diff --git a/helm/software/components/acic_procedural/proceduralConversion.ml b/helm/software/components/acic_procedural/proceduralConversion.ml index e42ad490e..e73ccfe59 100644 --- a/helm/software/components/acic_procedural/proceduralConversion.ml +++ b/helm/software/components/acic_procedural/proceduralConversion.ml @@ -26,18 +26,16 @@ module C = Cic module E = CicEnvironment module Un = CicUniv -module TC = CicTypeChecker -module D = Deannotate +module TC = CicTypeChecker module UM = UriManager module Rd = CicReduction module PEH = ProofEngineHelpers module PT = PrimitiveTactics - module DTI = DoubleTypeInference -(* helpers ******************************************************************) +module H = ProceduralHelpers -let cic = D.deannotate_term +(* helpers ******************************************************************) let rec list_sub start length = function | _ :: tl when start > 0 -> list_sub (pred start) length tl @@ -46,91 +44,105 @@ let rec list_sub start length = function (* proof construction *******************************************************) -let lift k n = - let rec lift_xns k (uri, t) = uri, lift_term k t - and lift_ms k = function +let iter f k = + let rec iter_xns k (uri, t) = uri, iter_term k t + and iter_ms k = function | None -> None - | Some t -> Some (lift_term k t) - and lift_fix len k (id, name, i, ty, bo) = - id, name, i, lift_term k ty, lift_term (k + len) bo - and lift_cofix len k (id, name, ty, bo) = - id, name, lift_term k ty, lift_term (k + len) bo - and lift_term k = function + | Some t -> Some (iter_term k t) + and iter_fix len k (id, name, i, ty, bo) = + id, name, i, iter_term k ty, iter_term (k + len) bo + and iter_cofix len k (id, name, ty, bo) = + id, name, iter_term k ty, iter_term (k + len) bo + and iter_term k = function | C.ASort _ as t -> t | C.AImplicit _ as t -> t | C.ARel (id, rid, m, b) as t -> - if m < k then t else - if m + n > 0 then C.ARel (id, rid, m + n, b) else + if m < k then t else f k id rid m b + | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (iter_xns k) xnss) + | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (iter_xns k) xnss) + | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (iter_xns k) xnss) + | C.AMutConstruct (id, uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (iter_xns k) xnss) + | C.AMeta (id, i, mss) -> C.AMeta(id, i, List.map (iter_ms k) mss) + | C.AAppl (id, ts) -> C.AAppl (id, List.map (iter_term k) ts) + | C.ACast (id, te, ty) -> C.ACast (id, iter_term k te, iter_term k ty) + | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, iter_term k outty, iter_term k t, List.map (iter_term k) pl) + | C.AProd (id, n, s, t) -> C.AProd (id, n, iter_term k s, iter_term (succ k) t) + | C.ALambda (id, n, s, t) -> C.ALambda (id, n, iter_term k s, iter_term (succ k) t) + | C.ALetIn (id, n, ty, s, t) -> C.ALetIn (id, n, iter_term k ty, iter_term k s, iter_term (succ k) t) + | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (iter_fix (List.length fl) k) fl) + | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (iter_cofix (List.length fl) k) fl) + in + iter_term k + +let lift k n = + let f _ id rid m b = + if m + n > 0 then C.ARel (id, rid, m + n, b) else + begin + HLog.error (Printf.sprintf "ProceduralConversion.lift: %i %i" m n); assert false - | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (lift_xns k) xnss) - | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (lift_xns k) xnss) - | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (lift_xns k) xnss) - | C.AMutConstruct (id, uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (lift_xns k) xnss) - | C.AMeta (id, i, mss) -> C.AMeta(id, i, List.map (lift_ms k) mss) - | C.AAppl (id, ts) -> C.AAppl (id, List.map (lift_term k) ts) - | C.ACast (id, te, ty) -> C.ACast (id, lift_term k te, lift_term k ty) - | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, lift_term k outty, lift_term k t, List.map (lift_term k) pl) - | C.AProd (id, n, s, t) -> C.AProd (id, n, lift_term k s, lift_term (succ k) t) - | C.ALambda (id, n, s, t) -> C.ALambda (id, n, lift_term k s, lift_term (succ k) t) - | C.ALetIn (id, n, ty, s, t) -> C.ALetIn (id, n, lift_term k ty, lift_term k s, lift_term (succ k) t) - | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (lift_fix (List.length fl) k) fl) - | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (lift_cofix (List.length fl) k) fl) + end in - lift_term k - - let fake_annotate id c = - let get_binder c m = - try match List.nth c (pred m) with - | Some (C.Name s, _) -> s - | _ -> assert false - with - | Invalid_argument _ -> assert false - in - let mk_decl n v = Some (n, C.Decl v) in - let mk_def n v ty = Some (n, C.Def (v, ty)) in - let mk_fix (name, _, ty, bo) = mk_def (C.Name name) bo ty in - let mk_cofix (name, ty, bo) = mk_def (C.Name name) bo ty in - let rec ann_xns c (uri, t) = uri, ann_term c t - and ann_ms c = function - | None -> None - | Some t -> Some (ann_term c t) - and ann_fix newc c (name, i, ty, bo) = - id, name, i, ann_term c ty, ann_term (List.rev_append newc c) bo - and ann_cofix newc c (name, ty, bo) = - id, name, ann_term c ty, ann_term (List.rev_append newc c) bo - and ann_term c = function - | C.Sort sort -> C.ASort (id, sort) - | C.Implicit ann -> C.AImplicit (id, ann) - | C.Rel m -> C.ARel (id, id, m, get_binder c m) - | C.Const (uri, xnss) -> C.AConst (id, uri, List.map (ann_xns c) xnss) - | C.Var (uri, xnss) -> C.AVar (id, uri, List.map (ann_xns c) xnss) - | C.MutInd (uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (ann_xns c) xnss) - | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (ann_xns c) xnss) - | C.Meta (i, mss) -> C.AMeta(id, i, List.map (ann_ms c) mss) - | C.Appl ts -> C.AAppl (id, List.map (ann_term c) ts) - | C.Cast (te, ty) -> C.ACast (id, ann_term c te, ann_term c ty) - | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) - | C.Prod (n, s, t) -> C.AProd (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) - | C.Lambda (n, s, t) -> C.ALambda (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) - | C.LetIn (n, s, ty, t) -> C.ALetIn (id, n, ann_term c s, ann_term c ty, ann_term (mk_def n s ty :: c) t) - | C.Fix (i, fl) -> C.AFix (id, i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) - | C.CoFix (i, fl) -> C.ACoFix (id, i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) + iter f k + +let subst k v = + let f k id rid m b = + if m = k then lift 1 (pred k) v else C.ARel (id, rid, pred m, b) + in + iter f k + +let fake_annotate id c = + let get_binder c m = + try match List.nth c (pred m) with + | Some (C.Name s, _) -> s + | _ -> assert false + with + | Invalid_argument _ -> assert false + in + let mk_decl n v = Some (n, C.Decl v) in + let mk_def n v ty = Some (n, C.Def (v, ty)) in + let mk_fix (name, _, ty, bo) = mk_def (C.Name name) bo ty in + let mk_cofix (name, ty, bo) = mk_def (C.Name name) bo ty in + let rec ann_xns c (uri, t) = uri, ann_term c t + and ann_ms c = function + | None -> None + | Some t -> Some (ann_term c t) + and ann_fix newc c (name, i, ty, bo) = + id, name, i, ann_term c ty, ann_term (List.rev_append newc c) bo + and ann_cofix newc c (name, ty, bo) = + id, name, ann_term c ty, ann_term (List.rev_append newc c) bo + and ann_term c = function + | C.Sort sort -> C.ASort (id, sort) + | C.Implicit ann -> C.AImplicit (id, ann) + | C.Rel m -> C.ARel (id, id, m, get_binder c m) + | C.Const (uri, xnss) -> C.AConst (id, uri, List.map (ann_xns c) xnss) + | C.Var (uri, xnss) -> C.AVar (id, uri, List.map (ann_xns c) xnss) + | C.MutInd (uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (ann_xns c) xnss) + | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (ann_xns c) xnss) + | C.Meta (i, mss) -> C.AMeta(id, i, List.map (ann_ms c) mss) + | C.Appl ts -> C.AAppl (id, List.map (ann_term c) ts) + | C.Cast (te, ty) -> C.ACast (id, ann_term c te, ann_term c ty) + | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) + | C.Prod (n, s, t) -> C.AProd (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) + | C.Lambda (n, s, t) -> C.ALambda (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) + | C.LetIn (n, s, ty, t) -> C.ALetIn (id, n, ann_term c s, ann_term c ty, ann_term (mk_def n s ty :: c) t) + | C.Fix (i, fl) -> C.AFix (id, i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) + | C.CoFix (i, fl) -> C.ACoFix (id, i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) + in + ann_term c + +let mk_arel k = C.ARel ("", "", k, "") + +let mk_aappl ts = C.AAppl ("", ts) + +let rec clear_absts f n k = function + | t when n = 0 -> f k t + | C.ALambda (_, _, _, t) -> clear_absts f (pred n) (succ k) t + | t -> + let u = match mk_aappl [lift (succ k) 1 t; mk_arel (succ k)] with + | C.AAppl (_, [ C.AAppl (id, ts); t]) -> C.AAppl (id, ts @ [t]) + | t -> t in - ann_term c - -let clear_absts m = - let rec aux k n = function - | C.AImplicit (_, None) as t -> t - | C.ALambda (id, s, v, t) when k > 0 -> - C.ALambda (id, s, v, aux (pred k) n t) - | C.ALambda (_, _, _, t) when n > 0 -> - aux 0 (pred n) (lift 1 (-1) t) - | t when n > 0 -> - Printf.eprintf "CLEAR: %u %s\n" n (CicPp.ppterm (cic t)); - assert false - | t -> t - in - aux m + clear_absts f (pred n) (succ k) u let hole id = C.AImplicit (id, Some `Hole) @@ -181,11 +193,35 @@ let generalize n = | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (gen_fix (List.length fl) k) fl) | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (gen_cofix (List.length fl) k) fl) in - gen_term 0 + gen_term -let mk_pattern psno predicate = - let body = generalize psno predicate in - clear_absts 0 psno body +let convert g ity k predicate = + let rec aux = function + | C.ALambda (_, _, b, ity), C.ALambda (id, n, u, pred) -> + C.ALambda (id, n, aux (b, u), aux (ity, pred)) + | C.AProd (_, _, b, ity), C.AProd (id, n, u, pred) -> + C.AProd (id, n, aux (b, u), aux (ity, pred)) + | C.ALetIn (_, _, a, b, ity), C.ALetIn (id, n, v, u, pred) -> + C.ALetIn (id, n, aux (a, v), aux (b, u), aux (ity, pred)) + | C.AAppl (_, bs), C.AAppl (id, us) when List.length bs = List.length us -> + let map b u = aux (b,u) in + C.AAppl (id, List.map2 map bs us) + | C.ACast (_, ity, b), C.ACast (id, pred, u) -> + C.ACast (id, aux (ity, pred), aux (b, u)) + | ity, C.AAppl (_, C.ALambda (_, _, _, pred) :: v :: []) -> + aux (ity, subst 1 v pred) + | ity, C.AAppl (id, C.ALambda (_, _, _, pred) :: v :: vs) -> + aux (ity, C.AAppl (id, subst 1 v pred :: vs)) + | _, pred -> pred + in + g k (aux (ity, predicate)) + +let mk_pattern psno ity predicate = + clear_absts (convert (generalize psno) ity) psno 0 predicate + +let beta v = function + | C.ALambda (_, _, _, t) -> subst 1 v t + | _ -> assert false let get_clears c p xtypes = let meta = C.Implicit None in @@ -238,18 +274,19 @@ let clear c hyp = | entry :: tail -> aux (entry :: c) tail in aux [] c - +(* let elim_inferred_type context goal arg using cpattern = - let metasenv, ugraph = [], Un.oblivion_ugraph in - let ety, _ugraph = TC.type_of_aux' metasenv context using ugraph in + let metasenv, ugraph = [], Un.default_ugraph in + let ety = H.get_type "elim_inferred_type" context using in let _splits, args_no = PEH.split_with_whd (context, ety) in - let _metasenv, predicate, _arg, actual_args = PT.mk_predicate_for_elim - ~context ~metasenv ~ugraph ~goal ~arg ~using ~cpattern ~args_no + let _metasenv, _subst, predicate, _arg, actual_args = + PT.mk_predicate_for_elim + ~context ~metasenv ~subst:[] ~ugraph ~goal ~arg ~using ~cpattern ~args_no in let ty = C.Appl (predicate :: actual_args) in let upto = List.length actual_args in Rd.head_beta_reduce ~delta:false ~upto ty - +*) let does_not_occur = function | C.AImplicit (_, None) -> true | _ -> false