X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2FproceduralPreprocess.ml;h=2b8e1ea3d2307bcdf01b22adfab04a9b457a63b9;hb=c465c17581bf606e0330cbd89b238279c184ad35;hp=dcd4cb58b20588734b9a40c5ee5ca27d2db0a1ba;hpb=a8e38e556152d99a0f9b7e643e7ac164d6220d06;p=helm.git diff --git a/helm/software/components/acic_procedural/proceduralPreprocess.ml b/helm/software/components/acic_procedural/proceduralPreprocess.ml index dcd4cb58b..2b8e1ea3d 100644 --- a/helm/software/components/acic_procedural/proceduralPreprocess.ml +++ b/helm/software/components/acic_procedural/proceduralPreprocess.ml @@ -23,76 +23,32 @@ * http://cs.unibo.it/helm/. *) -module UM = UriManager module C = Cic module Pp = CicPp -module Un = CicUniv module I = CicInspect -module E = CicEnvironment module S = CicSubstitution -module Rd = CicReduction -module TC = CicTypeChecker -module Rf = CicRefine module DTI = DoubleTypeInference module HEL = HExtlib +module PEH = ProofEngineHelpers -(* helper functions *********************************************************) +module H = ProceduralHelpers +module Cl = ProceduralClassify -let identity x = x +(* term preprocessing: optomization 1 ***************************************) -let comp f g x = f (g x) - -let split c t = - let add s v c = Some (s, C.Decl v) :: c in - let rec aux whd a n c = function - | C.Prod (s, v, t) -> aux false (v :: a) (succ n) (add s v c) t - | v when whd -> v :: a, n - | v -> aux true a n c (Rd.whd ~delta:true c v) - in - aux false [] 0 c t - -let get_type c t = - try let ty, _ = TC.type_of_aux' [] c t Un.empty_ugraph in ty - with e -> - Printf.eprintf "TC: context: %s\n" (Pp.ppcontext c); - Printf.eprintf "TC: term : %s\n" (Pp.ppterm t); - raise e - -let refine c t = - try let t, _, _, _ = Rf.type_of_aux' [] c t Un.empty_ugraph in t - with e -> - Printf.eprintf "REFINE EROR: %s\n" (Printexc.to_string e); - Printf.eprintf "Ref: context: %s\n" (Pp.ppcontext c); - Printf.eprintf "Ref: term : %s\n" (Pp.ppterm t); - raise e - -let get_tail c t = - match split c t with - | hd :: _, _ -> hd - | _ -> assert false - -let is_proof c t = - match get_tail c (get_type c (get_type c t)) with - | C.Sort C.Prop -> true - | C.Sort _ -> false - | _ -> assert false +let defined_premise = "DEFINED" -let is_not_atomic = function - | C.Sort _ - | C.Rel _ - | C.Const _ - | C.Var _ - | C.MutInd _ - | C.MutConstruct _ -> false - | _ -> true +let define v = + let name = C.Name defined_premise in + C.LetIn (name, v, C.Rel 1) let clear_absts m = let rec aux k n = function - | C.Lambda (s, v, t) when k > 0 -> + | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, aux (pred k) n t) - | C.Lambda (_, _, t) when n > 0 -> + | C.Lambda (_, _, t) when n > 0 -> aux 0 (pred n) (S.lift (-1) t) - | t when n > 0 -> + | t when n > 0 -> Printf.eprintf "CicPPP clear_absts: %u %s\n" n (Pp.ppterm t); assert false | t -> t @@ -104,54 +60,144 @@ let rec add_abst k = function | t when k > 0 -> assert false | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t) -let get_ind_type uri tyno = - match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (tys, _, lpsno, _), _ -> lpsno, List.nth tys tyno - | _ -> assert false - -let get_ind_parameters c t = - let ty = get_type c t in - let ps = match get_tail c ty with - | C.MutInd _ -> [] - | C.Appl (C.MutInd _ :: args) -> args - | _ -> assert false +let rec opt1_letin g es c name v t = + let name = H.mk_fresh_name c name in + let entry = Some (name, C.Def (v, None)) in + let g t = + if DTI.does_not_occur 1 t then begin + let x = S.lift (-1) t in + HLog.warn "Optimizer: remove 1"; opt1_proof g true c x + end else + let g = function + | C.LetIn (nname, vv, tt) when H.is_proof c v -> + let x = C.LetIn (nname, vv, C.LetIn (name, tt, S.lift_from 2 1 t)) in + HLog.warn "Optimizer: swap 1"; opt1_proof g true c x + | v -> + g (C.LetIn (name, v, t)) + in + if es then opt1_term g es c v else g v in - let disp = match get_tail c (get_type c ty) with - | C.Sort C.Prop -> 0 - | C.Sort _ -> 1 - | _ -> assert false + if es then opt1_proof g es (entry :: c) t else g t + +and opt1_lambda g es c name w t = + let name = H.mk_fresh_name c name in + let entry = Some (name, C.Decl w) in + let g t = + let name = if DTI.does_not_occur 1 t then C.Anonymous else name in + g (C.Lambda (name, w, t)) in - ps, disp + if es then opt1_proof g es (entry :: c) t else g t + +and opt1_appl g es c t vs = + let g vs = + let g = function + | C.LetIn (mame, vv, tt) -> + let vs = List.map (S.lift 1) vs in + let x = C.LetIn (mame, vv, C.Appl (tt :: vs)) in + HLog.warn "Optimizer: swap 2"; opt1_proof g true c x + | C.Lambda (name, ww, tt) -> + let v, vs = List.hd vs, List.tl vs in + let x = C.Appl (C.LetIn (name, v, tt) :: vs) in + HLog.warn "Optimizer: remove 2"; opt1_proof g true c x + | C.Appl vvs -> + let x = C.Appl (vvs @ vs) in + HLog.warn "Optimizer: nested application"; opt1_proof g true c x + | t -> + let rec aux d rvs = function + | [], _ -> + let x = C.Appl (t :: List.rev rvs) in + if d then opt1_proof g true c x else g x + | v :: vs, (cc, bb) :: cs -> + if H.is_not_atomic v && I.S.mem 0 cc && bb then begin + HLog.warn "Optimizer: anticipate 1"; + aux true (define v :: rvs) (vs, cs) + end else + aux d (v :: rvs) (vs, cs) + | _, [] -> assert false + in + let h () = + let classes, conclusion = Cl.classify c (H.get_type c t) in + let csno, vsno = List.length classes, List.length vs in + if csno < vsno then + let vvs, vs = HEL.split_nth csno vs in + let x = C.Appl (define (C.Appl (t :: vvs)) :: vs) in + HLog.warn "Optimizer: anticipate 2"; opt1_proof g true c x + else match conclusion, List.rev vs with + | Some _, rv :: rvs when csno = vsno && H.is_not_atomic rv -> + let x = C.Appl (t :: List.rev rvs @ [define rv]) in + HLog.warn "Optimizer: anticipate 3"; opt1_proof g true c x + | Some _, _ -> + g (C.Appl (t :: vs)) + | None, _ -> + aux false [] (vs, classes) + in + let rec aux h prev = function + | C.LetIn (name, vv, tt) :: vs -> + let t = S.lift 1 t in + let prev = List.map (S.lift 1) prev in + let vs = List.map (S.lift 1) vs in + let y = C.Appl (t :: List.rev prev @ tt :: vs) in + let x = C.LetIn (name, vv, y) in + HLog.warn "Optimizer: swap 3"; opt1_proof g true c x + | v :: vs -> aux h (v :: prev) vs + | [] -> h () + in + aux h [] vs + in + if es then opt1_proof g es c t else g t + in + if es then H.list_map_cps g (fun h -> opt1_term h es c) vs else g vs -let get_default_eliminator context uri tyno ty = - let _, (name, _, _, _) = get_ind_type uri tyno in - let ext = match get_tail context (get_type context ty) with - | C.Sort C.Prop -> "_ind" - | C.Sort C.Set -> "_rec" - | C.Sort C.CProp -> "_rec" - | C.Sort (C.Type _) -> "_rect" - | t -> - Printf.eprintf "CicPPP get_default_eliminator: %s\n" (Pp.ppterm t); - assert false +and opt1_mutcase g es c uri tyno outty arg cases = + let eliminator = H.get_default_eliminator c uri tyno outty in + let lpsno, (_, _, _, constructors) = H.get_ind_type uri tyno in + let ps, sort_disp = H.get_ind_parameters c arg in + let lps, rps = HEL.split_nth lpsno ps in + let rpsno = List.length rps in + let predicate = clear_absts rpsno (1 - sort_disp) outty in + let is_recursive t = + I.S.mem tyno (I.get_mutinds_of_uri uri t) in - let buri = UM.buri_of_uri uri in - let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in - C.Const (uri, []) + let map2 case (_, cty) = + let map (h, case, k) (_, premise) = + if h > 0 then pred h, case, k else + if is_recursive premise then + 0, add_abst k case, k + 2 + else + 0, case, succ k + in + let premises, _ = PEH.split_with_whd (c, cty) in + let _, lifted_case, _ = + List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises)) + in + lifted_case + in + let lifted_cases = List.map2 map2 cases constructors in + let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in + let x = H.refine c (C.Appl args) in + HLog.warn "Optimizer: remove 3"; opt1_proof g es c x -let add g htbl t proof decurry = - if proof then C.CicHash.add htbl t decurry; - g t proof decurry +and opt1_cast g es c t w = + let g t = HLog.warn "Optimizer: remove 4"; g t in + if es then opt1_proof g es c t else g t -let find g htbl t = - try - let decurry = C.CicHash.find htbl t in g t true decurry - with Not_found -> g t false 0 +and opt1_other g es c t = g t -(* term preprocessing *******************************************************) +and opt1_proof g es c = function + | C.LetIn (name, v, t) -> opt1_letin g es c name v t + | C.Lambda (name, w, t) -> opt1_lambda g es c name w t + | C.Appl (t :: v :: vs) -> opt1_appl g es c t (v :: vs) + | C.Appl [t] -> opt1_proof g es c t + | C.MutCase (u, n, t, v, ws) -> opt1_mutcase g es c u n t v ws + | C.Cast (t, w) -> opt1_cast g es c t w + | t -> opt1_other g es c t -let expanded_premise = "EXPANDED" +and opt1_term g es c t = + if H.is_proof c t then opt1_proof g es c t else g t -let defined_premise = "DEFINED" +(* term preprocessing: optomization 2 ***************************************) + +let expanded_premise = "EXPANDED" let eta_expand g tys t = assert (tys <> []); @@ -159,158 +205,70 @@ let eta_expand g tys t = let lambda i ty t = C.Lambda (C.Name (name i), ty, t) in let arg i = C.Rel (succ i) in let rec aux i f a = function - | [] -> f, a - | ty :: tl -> aux (succ i) (comp f (lambda i ty)) (arg i :: a) tl + | [] -> f, a + | (_, ty) :: tl -> aux (succ i) (H.compose f (lambda i ty)) (arg i :: a) tl in let n = List.length tys in - let absts, args = aux 0 identity [] tys in + let absts, args = aux 0 H.identity [] tys in let t = match S.lift n t with | C.Appl ts -> C.Appl (ts @ args) | t -> C.Appl (t :: args) in g (absts t) -let get_tys c decurry = - let rec aux n = function -(* | C.Appl (hd :: tl) -> aux (n + List.length tl) hd *) - | t -> - let tys, _ = split c (get_type c t) in - let _, tys = HEL.split_nth n (List.rev tys) in - let tys, _ = HEL.split_nth decurry tys in - tys - in - aux 0 - -let eta_fix c t proof decurry = - let rec aux g c = function - | C.LetIn (name, v, t) -> - let g t = g (C.LetIn (name, v, t)) in - let entry = Some (name, C.Def (v, None)) in - aux g (entry :: c) t - | t -> eta_expand g (get_tys c decurry t) t - in - if proof && decurry > 0 then aux identity c t else t - -let rec pp_cast g ht es c t v = - if true then pp_proof g ht es c t else find g ht t - -and pp_lambda g ht es c name v t = - let name = if DTI.does_not_occur 1 t then C.Anonymous else name in - let entry = Some (name, C.Decl v) in - let g t _ decurry = - let t = eta_fix (entry :: c) t true decurry in - g (C.Lambda (name, v, t)) true 0 in - if true then pp_proof g ht es (entry :: c) t else find g ht t - -and pp_letin g ht es c name v t = +let rec opt2_letin g c name v t = let entry = Some (name, C.Def (v, None)) in - let g t _ decurry = - if DTI.does_not_occur 1 t then g (S.lift (-1) t) true decurry else - let g v proof d = match v with - | C.LetIn (mame, w, u) when proof -> - let x = C.LetIn (mame, w, C.LetIn (name, u, S.lift_from 2 1 t)) in - pp_proof g ht false c x - | v -> - let v = eta_fix c v proof d in - g (C.LetIn (name, v, t)) true decurry - in - if true then pp_term g ht es c v else find g ht v + let g t = + let g v = g (C.LetIn (name, v, t)) in + opt2_term g c v in - if true then pp_proof g ht es (entry :: c) t else find g ht t - -and pp_appl_one g ht es c t v = - let g t _ decurry = - let g v proof d = - match t, v with - | t, C.LetIn (mame, w, u) when proof -> - let x = C.LetIn (mame, w, C.Appl [S.lift 1 t; u]) in - pp_proof g ht false c x - | C.LetIn (mame, w, u), v -> - let x = C.LetIn (mame, w, C.Appl [u; S.lift 1 v]) in - pp_proof g ht false c x - | C.Appl ts, v when decurry > 0 -> - let v = eta_fix c v proof d in - g (C.Appl (List.append ts [v])) true (pred decurry) - | t, v when is_not_atomic t -> - let mame = C.Name defined_premise in - let x = C.LetIn (mame, t, C.Appl [C.Rel 1; S.lift 1 v]) in - pp_proof g ht false c x - | t, v -> - let v = eta_fix c v proof d in - g (C.Appl [t; v]) true (pred decurry) - in - if true then pp_term g ht es c v else find g ht v + opt2_proof g (entry :: c) t + +and opt2_lambda g c name w t = + let entry = Some (name, C.Decl w) in + let g t = g (C.Lambda (name, w, t)) in + opt2_proof g (entry :: c) t + +and opt2_appl g c t vs = + let g vs = + let x = C.Appl (t :: vs) in + let vsno = List.length vs in + let _, csno = PEH.split_with_whd (c, H.get_type c t) in + if vsno < csno then + let tys, _ = PEH.split_with_whd (c, H.get_type c x) in + let tys = List.rev (List.tl tys) in + let tys, _ = HEL.split_nth (csno - vsno) tys in + HLog.warn "Optimizer: eta 1"; eta_expand g tys x + else g x in - if true then pp_proof g ht es c t else find g ht t - -and pp_appl g ht es c t = function - | [] -> pp_proof g ht es c t - | [v] -> pp_appl_one g ht es c t v - | v1 :: v2 :: vs -> - let x = C.Appl (C.Appl [t; v1] :: v2 :: vs) in - pp_proof g ht es c x - -and pp_atomic g ht es c t = - let _, premsno = split c (get_type c t) in - g t true premsno + H.list_map_cps g (fun h -> opt2_term h c) vs -and pp_mutcase g ht es c uri tyno outty arg cases = - let eliminator = get_default_eliminator c uri tyno outty in - let lpsno, (_, _, _, constructors) = get_ind_type uri tyno in - let ps, sort_disp = get_ind_parameters c arg in - let lps, rps = HEL.split_nth lpsno ps in - let rpsno = List.length rps in - let predicate = clear_absts rpsno (1 - sort_disp) outty in - let is_recursive t = - I.S.mem tyno (I.get_mutinds_of_uri uri t) - in - let map2 case (_, cty) = - let map (h, case, k) premise = - if h > 0 then pred h, case, k else - if is_recursive premise then - 0, add_abst k case, k + 2 - else - 0, case, succ k - in - let premises, _ = split c cty in - let _, lifted_case, _ = - List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises)) - in - lifted_case - in - let lifted_cases = List.map2 map2 cases constructors in - let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in - let x = refine c (C.Appl args) in - pp_proof g ht es c x +and opt2_other g c t = + let tys, csno = PEH.split_with_whd (c, H.get_type c t) in + if csno > 0 then begin + let tys = List.rev (List.tl tys) in + HLog.warn "Optimizer: eta 2"; eta_expand g tys t + end else g t -and pp_proof g ht es c t = -(* Printf.eprintf "IN: |- %s\n" (*CicPp.ppcontext c*) (CicPp.ppterm t); - let g t proof decurry = - Printf.eprintf "OUT: %b %u |- %s\n" proof decurry (CicPp.ppterm t); - g t proof decurry - in *) -(* let g t proof decurry = add g ht t proof decurry in *) - match t with - | C.Cast (t, v) -> pp_cast g ht es c t v - | C.Lambda (name, v, t) -> pp_lambda g ht es c name v t - | C.LetIn (name, v, t) -> pp_letin g ht es c name v t - | C.Appl (t :: vs) -> pp_appl g ht es c t vs - | C.MutCase (u, n, t, v, ws) -> pp_mutcase g ht es c u n t v ws - | t -> pp_atomic g ht es c t +and opt2_proof g c = function + | C.LetIn (name, v, t) -> opt2_letin g c name v t + | C.Lambda (name, w, t) -> opt2_lambda g c name w t + | C.Appl (t :: vs) -> opt2_appl g c t vs + | t -> opt2_other g c t -and pp_term g ht es c t = - if is_proof c t then pp_proof g ht es c t else g t false 0 +and opt2_term g c t = + if H.is_proof c t then opt2_proof g c t else g t (* object preprocessing *****************************************************) let pp_obj = function | C.Constant (name, Some bo, ty, pars, attrs) -> - let g bo proof decurry = - let bo = eta_fix [] bo proof decurry in - C.Constant (name, Some bo, ty, pars, attrs) + let g bo = + Printf.eprintf "Optimized: %s\n" (Pp.ppterm bo); + let _ = H.get_type [] (C.Cast (bo, ty)) in + C.Constant (name, Some bo, ty, pars, attrs) in - let ht = C.CicHash.create 1 in Printf.eprintf "BEGIN: %s\n" name; - begin try pp_term g ht true [] bo + begin try opt1_term (opt2_term g []) true [] bo with e -> failwith ("PPP: " ^ Printexc.to_string e) end | obj -> obj