X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Facic_procedural%2FproceduralTypes.ml;h=3b6afc4c31ac0d54f18d58613c583311801e199d;hb=5b45f78ed4293ebbe8cc73ad925bca11a300d021;hp=91f2408b94ba6ea9c15d5e6fee582381a6536a5d;hpb=380284d5b85bd218f812bc0f9725061912c291f6;p=helm.git diff --git a/helm/software/components/acic_procedural/proceduralTypes.ml b/helm/software/components/acic_procedural/proceduralTypes.ml index 91f2408b9..3b6afc4c3 100644 --- a/helm/software/components/acic_procedural/proceduralTypes.ml +++ b/helm/software/components/acic_procedural/proceduralTypes.ml @@ -23,171 +23,239 @@ * http://cs.unibo.it/helm/. *) -module H = HExtlib -module C = Cic -module G = GrafiteAst -module N = CicNotationPt +module HEL = HExtlib +module C = Cic +module I = CicInspect +module G = GrafiteAst +module N = CicNotationPt + +module H = ProceduralHelpers (* functions to be moved ****************************************************) +let list_rev_map2 map l1 l2 = + let rec aux res = function + | hd1 :: tl1, hd2 :: tl2 -> aux (map hd1 hd2 :: res) (tl1, tl2) + | _ -> res + in + aux [] (l1, l2) + let list_map2_filter map l1 l2 = let rec filter l = function | [] -> l | None :: tl -> filter l tl | Some a :: tl -> filter (a :: l) tl in - filter [] (List.rev_map2 map l1 l2) - -let rec list_split n l = - if n = 0 then [], l else - let l1, l2 = list_split (pred n) (List.tl l) in - List.hd l :: l1, l2 - -let cont sep a = match sep with - | None -> a - | Some sep -> sep :: a - -let list_rev_map_concat map sep a l = - let rec aux a = function - | [] -> a - | [x] -> map a x - | x :: y :: l -> aux (sep :: map a x) (y :: l) - in - aux a l - -let is_atomic = function - | C.ASort _ - | C.AConst _ - | C.AMutInd _ - | C.AMutConstruct _ - | C.AVar _ - | C.ARel _ - | C.AMeta _ - | C.AImplicit _ -> true - | _ -> false + filter [] (list_rev_map2 map l1 l2) + +let list_init f i = + let rec aux a j = if j < 0 then a else aux (f j :: a) (pred j) in + aux [] i (****************************************************************************) -type name = string -type what = Cic.annterm +type flavour = C.object_flavour +type name = string option +type hyp = string +type what = C.annterm type how = bool -type using = Cic.annterm +type using = C.annterm type count = int type note = string -type where = (name * name) option -type inferred = Cic.annterm -type pattern = Cic.annterm +type where = (hyp * name) option +type inferred = C.annterm +type pattern = C.annterm +type body = C.annterm option +type types = C.anninductiveType list +type lpsno = int type step = Note of note - | Theorem of name * what * note + | Inductive of types * lpsno * note + | Statement of flavour * name * what * body * note | Qed of note | Id of note | Intros of count option * name list * note | Cut of name * what * note | LetIn of name * what * note | Rewrite of how * what * where * pattern * note - | Elim of what * using option * note + | Elim of what * using option * pattern * note + | Cases of what * pattern * note | Apply of what * note | Change of inferred * what * where * pattern * note - | ClearBody of name * note + | Clear of hyp list * note + | ClearBody of hyp * note | Branch of step list list * note (* annterm constructors *****************************************************) -let mk_arel i b = Cic.ARel ("", "", i, b) +let mk_arel i b = C.ARel ("", "", i, b) + +(* FG: this is really awful !! *) +let arel_of_name = function + | C.Name s -> mk_arel 0 s + | C.Anonymous -> mk_arel 0 "_" + +(* helper functions on left params for use with inductive types *************) + +let strip_lps lpsno arity = + let rec aux no lps = function + | C.AProd (_, name, w, t) when no > 0 -> + let lp = name, Some w in + aux (pred no) (lp :: lps) t + | t -> lps, t + in + aux lpsno [] arity + +let merge_lps lps1 lps2 = + let map (n1, w1) (n2, _) = + let n = match n1, n2 with + | C.Name _, _ -> n1 + | _ -> n2 + in + n, w1 + in + if lps1 = [] then lps2 else + List.map2 map lps1 lps2 (* grafite ast constructors *************************************************) -let floc = H.dummy_floc +let floc = HEL.dummy_floc let mk_note str = G.Comment (floc, G.Note (floc, str)) -let mk_theorem name t = - let obj = N.Theorem (`Theorem, name, t, None) in +let mk_tacnote str a = + if str = "" then mk_note "" :: a else mk_note "" :: mk_note str :: a + +let mk_notenote str a = + if str = "" then a else mk_note str :: a + +let mk_thnote str a = + if str = "" then a else mk_note "" :: mk_note str :: a + +let mk_inductive types lpsno = + let map1 (lps1, cons) (name, arity) = + let lps2, arity = strip_lps lpsno arity in + merge_lps lps1 lps2, (name, arity) :: cons + in + let map2 (lps1, types) (_, name, kind, arity, cons) = + let lps2, arity = strip_lps lpsno arity in + let lps1, rev_cons = List.fold_left map1 (lps1, []) cons in + merge_lps lps1 lps2, (name, kind, arity, List.rev rev_cons) :: types + in + let map3 (name, xw) = arel_of_name name, xw in + let rev_lps, rev_types = List.fold_left map2 ([], []) types in + let lpars, types = List.rev_map map3 rev_lps, List.rev rev_types in + let obj = N.Inductive (lpars, types) in + G.Executable (floc, G.Command (floc, G.Obj (floc, obj))) + +let mk_statement flavour name t v = + let name = match name with Some name -> name | None -> assert false in + let obj = N.Theorem (flavour, name, t, v) in G.Executable (floc, G.Command (floc, G.Obj (floc, obj))) let mk_qed = G.Executable (floc, G.Command (floc, G.Qed floc)) -let mk_tactic tactic = - G.Executable (floc, G.Tactical (floc, G.Tactic (floc, tactic), None)) +let mk_tactic tactic punctation = + G.Executable (floc, G.Tactic (floc, Some tactic, punctation)) -let mk_id = +let mk_punctation punctation = + G.Executable (floc, G.Tactic (floc, None, punctation)) + +let mk_id punctation = let tactic = G.IdTac floc in - mk_tactic tactic + mk_tactic tactic punctation -let mk_intros xi ids = - let tactic = G.Intros (floc, xi, ids) in - mk_tactic tactic +let mk_intros xi xids punctation = + let tactic = G.Intros (floc, (xi, xids)) in + mk_tactic tactic punctation -let mk_cut name what = +let mk_cut name what punctation = + let name = match name with Some name -> name | None -> assert false in let tactic = G.Cut (floc, Some name, what) in - mk_tactic tactic + mk_tactic tactic punctation -let mk_letin name what = +let mk_letin name what punctation = + let name = match name with Some name -> name | None -> assert false in let tactic = G.LetIn (floc, what, name) in - mk_tactic tactic + mk_tactic tactic punctation -let mk_rewrite direction what where pattern = +let mk_rewrite direction what where pattern punctation = let direction = if direction then `RightToLeft else `LeftToRight in let pattern, rename = match where with - | None -> (None, [], Some pattern), [] - | Some (premise, name) -> (None, [premise, pattern], None), [name] + | None -> (None, [], Some pattern), [] + | Some (premise, Some name) -> (None, [premise, pattern], None), [Some name] + | Some (premise, None) -> (None, [premise, pattern], None), [] in let tactic = G.Rewrite (floc, direction, what, pattern, rename) in - mk_tactic tactic + mk_tactic tactic punctation + +let mk_elim what using pattern punctation = + let pattern = None, [], Some pattern in + let tactic = G.Elim (floc, what, using, pattern, (Some 0, [])) in + mk_tactic tactic punctation -let mk_elim what using = - let tactic = G.Elim (floc, what, using, Some 0, []) in - mk_tactic tactic +let mk_cases what pattern punctation = + let pattern = None, [], Some pattern in + let tactic = G.Cases (floc, what, pattern, (Some 0, [])) in + mk_tactic tactic punctation -let mk_apply t = - let tactic = G.Apply (floc, t) in - mk_tactic tactic +let mk_apply t punctation = + let tactic = G.ApplyP (floc, t) in + mk_tactic tactic punctation -let mk_change t where pattern = +let mk_change t where pattern punctation = let pattern = match where with | None -> None, [], Some pattern | Some (premise, _) -> None, [premise, pattern], None in let tactic = G.Change (floc, pattern, t) in - mk_tactic tactic + mk_tactic tactic punctation + +let mk_clear ids punctation = + let tactic = G.Clear (floc, ids) in + mk_tactic tactic punctation -let mk_clearbody id = +let mk_clearbody id punctation = let tactic = G.ClearBody (floc, id) in - mk_tactic tactic + mk_tactic tactic punctation -let mk_dot = G.Executable (floc, G.Tactical (floc, G.Dot floc, None)) +let mk_ob = + let punctation = G.Branch floc in + mk_punctation punctation -let mk_sc = G.Executable (floc, G.Tactical (floc, G.Semicolon floc, None)) +let mk_dot = G.Dot floc -let mk_ob = G.Executable (floc, G.Tactical (floc, G.Branch floc, None)) +let mk_sc = G.Semicolon floc -let mk_cb = G.Executable (floc, G.Tactical (floc, G.Merge floc, None)) +let mk_cb = G.Merge floc -let mk_vb = G.Executable (floc, G.Tactical (floc, G.Shift floc, None)) +let mk_vb = G.Shift floc (* rendering ****************************************************************) let rec render_step sep a = function - | Note s -> mk_note s :: a - | Theorem (n, t, s) -> mk_note s :: mk_theorem n t :: a - | Qed s -> (* mk_note s :: *) mk_qed :: a - | Id s -> mk_note s :: cont sep (mk_id :: a) - | Intros (c, ns, s) -> mk_note s :: cont sep (mk_intros c ns :: a) - | Cut (n, t, s) -> mk_note s :: cont sep (mk_cut n t :: a) - | LetIn (n, t, s) -> mk_note s :: cont sep (mk_letin n t :: a) - | Rewrite (b, t, w, e, s) -> mk_note s :: cont sep (mk_rewrite b t w e :: a) - | Elim (t, xu, s) -> mk_note s :: cont sep (mk_elim t xu :: a) - | Apply (t, s) -> mk_note s :: cont sep (mk_apply t :: a) - | Change (t, _, w, e, s) -> mk_note s :: cont sep (mk_change t w e :: a) - | ClearBody (n, s) -> mk_note s :: cont sep (mk_clearbody n :: a) - | Branch ([], s) -> a - | Branch ([ps], s) -> render_steps sep a ps - | Branch (pss, s) -> - let a = mk_ob :: a in - let body = mk_cb :: list_rev_map_concat (render_steps None) mk_vb a pss in - mk_note s :: cont sep body + | Note s -> mk_notenote s a + | Statement (f, n, t, v, s) -> mk_statement f n t v :: mk_thnote s a + | Inductive (lps, ts, s) -> mk_inductive lps ts :: mk_thnote s a + | Qed s -> mk_qed :: mk_tacnote s a + | Id s -> mk_id sep :: mk_tacnote s a + | Intros (c, ns, s) -> mk_intros c ns sep :: mk_tacnote s a + | Cut (n, t, s) -> mk_cut n t sep :: mk_tacnote s a + | LetIn (n, t, s) -> mk_letin n t sep :: mk_tacnote s a + | Rewrite (b, t, w, e, s) -> mk_rewrite b t w e sep :: mk_tacnote s a + | Elim (t, xu, e, s) -> mk_elim t xu e sep :: mk_tacnote s a + | Cases (t, e, s) -> mk_cases t e sep :: mk_tacnote s a + | Apply (t, s) -> mk_apply t sep :: mk_tacnote s a + | Change (t, _, w, e, s) -> mk_change t w e sep :: mk_tacnote s a + | Clear (ns, s) -> mk_clear ns sep :: mk_tacnote s a + | ClearBody (n, s) -> mk_clearbody n sep :: mk_tacnote s a + | Branch ([], s) -> a + | Branch ([ps], s) -> render_steps sep a ps + | Branch (ps :: pss, s) -> + let a = mk_ob :: mk_tacnote s a in + let a = List.fold_left (render_steps mk_vb) a (List.rev pss) in + mk_punctation sep :: render_steps mk_cb a ps and render_steps sep a = function | [] -> a @@ -195,19 +263,41 @@ and render_steps sep a = function | p :: Branch ([], _) :: ps -> render_steps sep a (p :: ps) | p :: ((Branch (_ :: _ :: _, _) :: _) as ps) -> - render_steps sep (render_step (Some mk_sc) a p) ps + render_steps sep (render_step mk_sc a p) ps | p :: ps -> - render_steps sep (render_step (Some mk_dot) a p) ps + render_steps sep (render_step mk_sc a p) ps -let render_steps a = render_steps None a +let render_steps a = render_steps mk_dot a (* counting *****************************************************************) let rec count_step a = function | Note _ - | Theorem _ + | Statement _ | Qed _ -> a | Branch (pps, _) -> List.fold_left count_steps a pps | _ -> succ a and count_steps a = List.fold_left count_step a + +let rec count_node a = function + | Note _ + | Inductive _ + | Statement _ + | Qed _ + | Id _ + | Intros _ + | Clear _ + | ClearBody _ -> a + | Cut (_, t, _) + | LetIn (_, t, _) + | Apply (t, _) -> I.count_nodes a (H.cic t) + | Rewrite (_, t, _, p, _) + | Elim (t, _, p, _) + | Cases (t, p, _) + | Change (t, _, _, p, _) -> + let a = I.count_nodes a (H.cic t) in + I.count_nodes a (H.cic p) + | Branch (ss, _) -> List.fold_left count_nodes a ss + +and count_nodes a = List.fold_left count_node a