X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Fcic%2FcicUtil.ml;h=9b6ece214f4d1d251c28f85b25e82c3613c058fb;hb=f9abd21eb0d26cf9b632af4df819225be4d091e3;hp=7c6e3eabe28619cc14fdd0cb812f998566d38b52;hpb=55b82bd235d82ff7f0a40d980effe1efde1f5073;p=helm.git diff --git a/helm/software/components/cic/cicUtil.ml b/helm/software/components/cic/cicUtil.ml index 7c6e3eabe..9b6ece214 100644 --- a/helm/software/components/cic/cicUtil.ml +++ b/helm/software/components/cic/cicUtil.ml @@ -25,7 +25,8 @@ (* $Id$ *) -open Printf +module C = Cic +module UM = UriManager exception Meta_not_found of int exception Subst_not_found of int @@ -61,7 +62,8 @@ let clean_up_local_context subst metasenv n l = None , _ -> None | _ , t -> t) cc l with - Invalid_argument _ -> assert false) + Invalid_argument _ -> + assert false) let is_closed = let module C = Cic in @@ -78,7 +80,8 @@ let is_closed = | C.Cast (te,ty) -> is_closed k te && is_closed k ty | C.Prod (name,so,dest) -> is_closed k so && is_closed (k+1) dest | C.Lambda (_,so,dest) -> is_closed k so && is_closed (k+1) dest - | C.LetIn (_,so,dest) -> is_closed k so && is_closed (k+1) dest + | C.LetIn (_,so,ty,dest) -> + is_closed k so && is_closed k ty && is_closed (k+1) dest | C.Appl l -> List.fold_right (fun x i -> i && is_closed k x) l true | C.Var (_,exp_named_subst) @@ -108,30 +111,33 @@ in let rec is_meta_closed = function - Cic.Rel _ -> true - | Cic.Meta _ -> false - | Cic.Sort _ -> true - | Cic.Implicit _ -> assert false - | Cic.Cast (te,ty) -> is_meta_closed te && is_meta_closed ty - | Cic.Prod (name,so,dest) -> is_meta_closed so && is_meta_closed dest - | Cic.Lambda (_,so,dest) -> is_meta_closed so && is_meta_closed dest - | Cic.LetIn (_,so,dest) -> is_meta_closed so && is_meta_closed dest - | Cic.Appl l -> + C.Rel _ -> true + | C.Meta _ -> false + | C.Sort _ -> true + | C.Implicit _ -> assert false + | C.Cast (te,ty) -> is_meta_closed te && is_meta_closed ty + | C.Prod (name,so,dest) -> is_meta_closed so && is_meta_closed dest + | C.Lambda (_,so,dest) -> is_meta_closed so && is_meta_closed dest + | C.LetIn (_,so,ty,dest) -> + is_meta_closed so && + is_meta_closed ty && + is_meta_closed dest + | C.Appl l -> not (List.exists (fun x -> not (is_meta_closed x)) l) - | Cic.Var (_,exp_named_subst) - | Cic.Const (_,exp_named_subst) - | Cic.MutInd (_,_,exp_named_subst) - | Cic.MutConstruct (_,_,_,exp_named_subst) -> + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> not (List.exists (fun (_,x) -> not (is_meta_closed x)) exp_named_subst) - | Cic.MutCase (_,_,out,te,pl) -> + | C.MutCase (_,_,out,te,pl) -> is_meta_closed out && is_meta_closed te && not (List.exists (fun x -> not (is_meta_closed x)) pl) - | Cic.Fix (_,fl) -> + | C.Fix (_,fl) -> not (List.exists (fun (_,_,ty,bo) -> not (is_meta_closed ty) || not (is_meta_closed bo)) fl) - | Cic.CoFix (_,fl) -> + | C.CoFix (_,fl) -> not (List.exists (fun (_,ty,bo) -> not (is_meta_closed ty) || not (is_meta_closed bo)) @@ -145,18 +151,18 @@ let term_of_uri uri = let s = UriManager.string_of_uri uri in try (if UriManager.uri_is_con uri then - Cic.Const (uri, []) + C.Const (uri, []) else if UriManager.uri_is_var uri then - Cic.Var (uri, []) + C.Var (uri, []) else if not (Str.string_match xpointer_RE s 0) then raise (UriManager.IllFormedUri s) else let (baseuri,xpointer) = (Str.matched_group 1 s, Str.matched_group 2 s) in let baseuri = UriManager.uri_of_string baseuri in (match Str.split slash_RE xpointer with - | [_; tyno] -> Cic.MutInd (baseuri, int_of_string tyno - 1, []) + | [_; tyno] -> C.MutInd (baseuri, int_of_string tyno - 1, []) | [_; tyno; consno] -> - Cic.MutConstruct + C.MutConstruct (baseuri, int_of_string tyno - 1, int_of_string consno, []) | _ -> raise Exit)) with @@ -165,14 +171,14 @@ let term_of_uri uri = | Not_found -> raise (UriManager.IllFormedUri s) let uri_of_term = function - | Cic.Const (uri, []) - | Cic.Var (uri, []) -> uri - | Cic.MutInd (baseuri, tyno, []) -> + | C.Const (uri, _) + | C.Var (uri, _) -> uri + | C.MutInd (baseuri, tyno, _) -> UriManager.uri_of_string - (sprintf "%s#xpointer(1/%d)" (UriManager.string_of_uri baseuri) (tyno+1)) - | Cic.MutConstruct (baseuri, tyno, consno, []) -> + (Printf.sprintf "%s#xpointer(1/%d)" (UriManager.string_of_uri baseuri) (tyno+1)) + | C.MutConstruct (baseuri, tyno, consno, _) -> UriManager.uri_of_string - (sprintf "%s#xpointer(1/%d/%d)" (UriManager.string_of_uri baseuri) + (Printf.sprintf "%s#xpointer(1/%d/%d)" (UriManager.string_of_uri baseuri) (tyno + 1) consno) | _ -> raise (Invalid_argument "uri_of_term") @@ -180,56 +186,73 @@ let uri_of_term = function (* let pack terms = List.fold_right - (fun term acc -> Cic.Prod (Cic.Anonymous, term, acc)) - terms (Cic.Sort (Cic.Type (CicUniv.fresh ()))) + (fun term acc -> C.Prod (C.Anonymous, term, acc)) + terms (C.Sort (C.Type (CicUniv.fresh ()))) let rec unpack = function - | Cic.Prod (Cic.Anonymous, term, Cic.Sort (Cic.Type _)) -> [term] - | Cic.Prod (Cic.Anonymous, term, tgt) -> term :: unpack tgt + | C.Prod (C.Anonymous, term, C.Sort (C.Type _)) -> [term] + | C.Prod (C.Anonymous, term, tgt) -> term :: unpack tgt | _ -> assert false *) let rec strip_prods n = function | t when n = 0 -> t - | Cic.Prod (_, _, tgt) when n > 0 -> strip_prods (n-1) tgt + | C.Prod (_, _, tgt) when n > 0 -> strip_prods (n-1) tgt | _ -> failwith "not enough prods" let params_of_obj = function - | Cic.Constant (_, _, _, params, _) - | Cic.Variable (_, _, _, params, _) - | Cic.CurrentProof (_, _, _, _, params, _) - | Cic.InductiveDefinition (_, params, _, _) -> + | C.Constant (_, _, _, params, _) + | C.Variable (_, _, _, params, _) + | C.CurrentProof (_, _, _, _, params, _) + | C.InductiveDefinition (_, params, _, _) -> params let attributes_of_obj = function - | Cic.Constant (_, _, _, _, attributes) - | Cic.Variable (_, _, _, _, attributes) - | Cic.CurrentProof (_, _, _, _, _, attributes) - | Cic.InductiveDefinition (_, _, _, attributes) -> + | C.Constant (_, _, _, _, attributes) + | C.Variable (_, _, _, _, attributes) + | C.CurrentProof (_, _, _, _, _, attributes) + | C.InductiveDefinition (_, _, _, attributes) -> attributes + +let is_generated obj = List.exists ((=) `Generated) (attributes_of_obj obj) + +let projections_of_record obj uri = + let attrs = attributes_of_obj obj in + try + let tag=List.find (function `Class (`Record _) -> true|_->false) attrs in + match tag with + | `Class (`Record l) -> + List.map (fun (name,_,_) -> + let buri = UriManager.buri_of_uri uri in + let puri = UriManager.uri_of_string (buri ^ "/" ^ name ^ ".con") in + puri) l + | _-> assert false + with Not_found -> [] +;; + let rec mk_rels howmany from = match howmany with | 0 -> [] - | _ -> (Cic.Rel (howmany + from)) :: (mk_rels (howmany-1) from) + | _ -> (C.Rel (howmany + from)) :: (mk_rels (howmany-1) from) let id_of_annterm = function - | Cic.ARel (id,_,_,_) - | Cic.AVar (id,_,_) - | Cic.AMeta (id,_,_) - | Cic.ASort (id,_) - | Cic.AImplicit (id,_) - | Cic.ACast (id,_,_) - | Cic.AProd (id,_,_,_) - | Cic.ALambda (id,_,_,_) - | Cic.ALetIn (id,_,_,_) - | Cic.AAppl (id,_) - | Cic.AConst (id,_,_) - | Cic.AMutInd (id,_,_,_) - | Cic.AMutConstruct (id,_,_,_,_) - | Cic.AMutCase (id,_,_,_,_,_) - | Cic.AFix (id,_,_) - | Cic.ACoFix (id,_,_) -> id + | C.ARel (id,_,_,_) + | C.AVar (id,_,_) + | C.AMeta (id,_,_) + | C.ASort (id,_) + | C.AImplicit (id,_) + | C.ACast (id,_,_) + | C.AProd (id,_,_,_) + | C.ALambda (id,_,_,_) + | C.ALetIn (id,_,_,_,_) + | C.AAppl (id,_) + | C.AConst (id,_,_) + | C.AMutInd (id,_,_,_) + | C.AMutConstruct (id,_,_,_,_) + | C.AMutCase (id,_,_,_,_,_) + | C.AFix (id,_,_) + | C.ACoFix (id,_,_) -> id let rec rehash_term = @@ -262,7 +285,8 @@ let rec rehash_term = | C.Cast (te,ty) -> C.Cast (rehash_term te, rehash_term ty) | C.Prod (n,s,t) -> C.Prod (n, rehash_term s, rehash_term t) | C.Lambda (n,s,t) -> C.Lambda (n, rehash_term s, rehash_term t) - | C.LetIn (n,s,t) -> C.LetIn (n, rehash_term s, rehash_term t) + | C.LetIn (n,s,ty,t) -> + C.LetIn (n, rehash_term s, rehash_term ty, rehash_term t) | C.Appl l -> C.Appl (List.map rehash_term l) | C.Const (uri,exp_named_subst) -> let uri' = recons uri in @@ -327,12 +351,7 @@ let rehash_obj = | Some (name,C.Decl t) -> Some (name,C.Decl (rehash_term t)) | Some (name,C.Def (bo,ty)) -> - let ty' = - match ty with - None -> None - | Some ty'' -> Some (rehash_term ty'') - in - Some (name,C.Def (rehash_term bo, ty'))) hyps, + Some (name,C.Def (rehash_term bo, rehash_term ty))) hyps, rehash_term ty)) conjs in @@ -363,3 +382,351 @@ let rehash_obj = in C.InductiveDefinition (tl', params', paramsno, attrs) +let rec metas_of_term = function + | C.Meta (i, c) -> [i,c] + | C.Var (_, ens) + | C.Const (_, ens) + | C.MutInd (_, _, ens) + | C.MutConstruct (_, _, _, ens) -> + List.flatten (List.map (fun (u, t) -> metas_of_term t) ens) + | C.Cast (s, t) + | C.Prod (_, s, t) + | C.Lambda (_, s, t) -> (metas_of_term s) @ (metas_of_term t) + | C.LetIn (_, s, ty, t) -> + (metas_of_term s) @ (metas_of_term ty) @ (metas_of_term t) + | C.Appl l -> List.flatten (List.map metas_of_term l) + | C.MutCase (uri, i, s, t, l) -> + (metas_of_term s) @ (metas_of_term t) @ + (List.flatten (List.map metas_of_term l)) + | C.Fix (i, il) -> + List.flatten + (List.map (fun (s, i, t1, t2) -> + (metas_of_term t1) @ (metas_of_term t2)) il) + | C.CoFix (i, il) -> + List.flatten + (List.map (fun (s, t1, t2) -> + (metas_of_term t1) @ (metas_of_term t2)) il) + | _ -> [] +;; + +module MetaOT = struct + type t = int * C.term option list + let compare = Pervasives.compare +end + +module S = Set.Make(MetaOT) + +let rec metas_of_term_set = function + | C.Meta (i, c) -> S.singleton (i,c) + | C.Var (_, ens) + | C.Const (_, ens) + | C.MutInd (_, _, ens) + | C.MutConstruct (_, _, _, ens) -> + List.fold_left + (fun s (_,t) -> S.union s (metas_of_term_set t)) + S.empty ens + | C.Cast (s, t) + | C.Prod (_, s, t) + | C.Lambda (_, s, t) -> S.union (metas_of_term_set s) (metas_of_term_set t) + | C.LetIn (_, s, ty, t) -> + S.union (metas_of_term_set s) + (S.union (metas_of_term_set ty) (metas_of_term_set t)) + | C.Appl l -> + List.fold_left + (fun s t -> S.union s (metas_of_term_set t)) + S.empty l + | C.MutCase (uri, i, s, t, l) -> + S.union + (S.union (metas_of_term_set s) (metas_of_term_set t)) + (List.fold_left + (fun s t -> S.union s (metas_of_term_set t)) + S.empty l) + | C.Fix (_, il) -> + (List.fold_left + (fun s (_,_,t1,t2) -> + S.union s (S.union (metas_of_term_set t1) (metas_of_term_set t2)))) + S.empty il + | C.CoFix (i, il) -> + (List.fold_left + (fun s (_,t1,t2) -> + S.union s (S.union (metas_of_term_set t1) (metas_of_term_set t2)))) + S.empty il + | _ -> S.empty +;; + +let metas_of_term_set t = + let s = metas_of_term_set t in + S.elements s +;; + +(* syntactic_equality up to the *) +(* distinction between fake dependent products *) +(* and non-dependent products, alfa-conversion *) +let alpha_equivalence = + let rec aux t t' = + if t = t' then true + else + match t,t' with + C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2) -> + UriManager.eq uri1 uri2 && + aux_exp_named_subst exp_named_subst1 exp_named_subst2 + | C.Cast (te,ty), C.Cast (te',ty') -> + aux te te' && aux ty ty' + | C.Prod (_,s,t), C.Prod (_,s',t') -> + aux s s' && aux t t' + | C.Lambda (_,s,t), C.Lambda (_,s',t') -> + aux s s' && aux t t' + | C.LetIn (_,s,ty,t), C.LetIn(_,s',ty',t') -> + aux s s' && aux ty ty' && aux t t' + | C.Appl l, C.Appl l' when List.length l = List.length l' -> + (try + List.fold_left2 + (fun b t1 t2 -> b && aux t1 t2) true l l' + with + Invalid_argument _ -> false) + | C.Const (uri,exp_named_subst1), C.Const (uri',exp_named_subst2) -> + UriManager.eq uri uri' && + aux_exp_named_subst exp_named_subst1 exp_named_subst2 + | C.MutInd (uri,i,exp_named_subst1), C.MutInd (uri',i',exp_named_subst2) -> + UriManager.eq uri uri' && i = i' && + aux_exp_named_subst exp_named_subst1 exp_named_subst2 + | C.MutConstruct (uri,i,j,exp_named_subst1), + C.MutConstruct (uri',i',j',exp_named_subst2) -> + UriManager.eq uri uri' && i = i' && j = j' && + aux_exp_named_subst exp_named_subst1 exp_named_subst2 + | C.MutCase (sp,i,outt,t,pl), C.MutCase (sp',i',outt',t',pl') -> + UriManager.eq sp sp' && i = i' && + aux outt outt' && aux t t' && + (try + List.fold_left2 + (fun b t1 t2 -> b && aux t1 t2) true pl pl' + with + Invalid_argument _ -> false) + | C.Fix (i,fl), C.Fix (i',fl') -> + i = i' && + (try + List.fold_left2 + (fun b (_,i,ty,bo) (_,i',ty',bo') -> + b && i = i' && aux ty ty' && aux bo bo' + ) true fl fl' + with + Invalid_argument _ -> false) + | C.CoFix (i,fl), C.CoFix (i',fl') -> + i = i' && + (try + List.fold_left2 + (fun b (_,ty,bo) (_,ty',bo') -> + b && aux ty ty' && aux bo bo' + ) true fl fl' + with + Invalid_argument _ -> false) + | C.Meta (i, subst), C.Meta (i', subst') -> + i = i' && + (try + List.fold_left2 + (fun b xt xt' -> match xt,xt' with + | Some t, Some t' -> b && aux t t' + | _ -> b + ) true subst subst' + with + Invalid_argument _ -> false) + | C.Appl [t], t' | t, C.Appl [t'] -> assert false +(* FG: are we _really_ sure of these? + | C.Sort (C.Type u), C.Sort (C.Type u') -> u = u' + | C.Implicit a, C.Implicit a' -> a = a' + we insert an unused variable below to genarate a warning at compile time +*) + | _,_ -> false (* we already know that t != t' *) + and aux_exp_named_subst exp_named_subst1 exp_named_subst2 = + try + List.fold_left2 + (fun b (uri1,t1) (uri2,t2) -> + b && UriManager.eq uri1 uri2 && aux t1 t2 + ) true exp_named_subst1 exp_named_subst2 + with + Invalid_argument _ -> false + in + aux + +let is_sober c t = + let rec sober_term c g = function + | C.Rel i -> + if i <= 0 then fun b -> false else g + | C.Sort _ + | C.Implicit _ -> g + | C.Const (_, xnss) + | C.Var (_, xnss) + | C.MutConstruct (_, _, _, xnss) + | C.MutInd (_, _, xnss) -> sober_xnss c g xnss + | C.Meta (_, xss) -> sober_xss c g xss + | C.Lambda (_, v, t) + | C.Prod (_, v, t) + | C.Cast (t, v) -> + sober_term c (sober_term c g t) v + | C.LetIn (_, v, ty, t) -> + sober_term c (sober_term c (sober_term c g t) ty) v + | C.Appl [] + | C.Appl [_] + | C.Appl (C.Appl _ :: _) -> fun b -> false + | C.Appl ts -> sober_terms c g ts + | C.MutCase (_, _, t, v, ts) -> + sober_terms c (sober_term c (sober_term c g t) v) ts + | C.Fix (_, ifs) -> sober_ifs c g ifs + | C.CoFix (_, cifs) -> sober_cifs c g cifs + and sober_terms c g = List.fold_left (sober_term c) g + and sober_xnss c g = + let map g (_, t) = sober_term c g t in + List.fold_left map g + and sober_xss c g = + let map g = function + | None -> g + | Some t -> sober_term c g t + in + List.fold_left map g + and sober_ifs c g = + let map g (_, _, t, v) = sober_term c (sober_term c g t) v in + List.fold_left map g + and sober_cifs c g = + let map g (_, t, v) = sober_term c (sober_term c g t) v in + List.fold_left map g + in + sober_term c (fun b -> b) t true + +(* raw cic prettyprinter ****************************************************) + +let xiter out so ss sc map l = + let rec aux = function + | hd :: tl when tl <> [] -> map hd; out ss; aux tl + | hd :: tl -> map hd; aux tl + | [] -> () + in + out so; aux l; out sc + +let abst s w = Some (s, C.Decl w) + +let abbr s v w = Some (s, C.Def (v, w)) + +let pp_sort out = function + | C.Type _ -> out "*Type" + | C.Prop -> out "*Prop" + | C.CProp _ -> out "*CProp" + | C.Set -> out "*Set" + +let pp_name out = function + | C.Name s -> out s + | C.Anonymous -> out "_" + +let pp_rel out c i = + try match List.nth c (pred i) with + | None -> out (Printf.sprintf "%u[?]" i) + | Some (s, _) -> out (Printf.sprintf "%u[" i); pp_name out s; out "]" + with Failure "nth" -> out (Printf.sprintf "%u[%i]" i (List.length c - i)) + +let pp_implicit out = function + | None -> out "?" + | Some `Closed -> out "?[Closed]" + | Some `Type -> out "?[Type]" + | Some `Hole -> out "?[Hole]" + | Some `Vector -> out "?[...]" + +let pp_uri out a = + out (Printf.sprintf "%s<%s>" (UM.name_of_uri a) (UM.string_of_uri a)) + +let rec pp_term out e c = function + | C.Sort h -> pp_sort out h + | C.Rel i -> pp_rel out c i + | C.Implicit x -> pp_implicit out x + | C.Meta (i, iss) -> + let map = function None -> out "_" | Some v -> pp_term out e c v in + out (Printf.sprintf "?%u" i); xiter out "[" "; " "]" map iss + | C.Var (a, xss) -> + pp_uri out a; pp_xss out e c xss + | C.Const (a, xss) -> + pp_uri out a; pp_xss out e c xss + | C.MutInd (a, m, xss) -> + pp_uri out a; out (Printf.sprintf "/%u" m); + pp_xss out e c xss + | C.MutConstruct (a, m, n, xss) -> + pp_uri out a; out (Printf.sprintf "/%u/%u" m n); + pp_xss out e c xss + | C.Cast (v, w) -> + out "type "; pp_term out e c w; out " contains "; pp_term out e c v + | C.Appl vs -> + xiter out "(" " @ " ")" (pp_term out e c) vs + | C.MutCase (a, m, w, v, vs) -> + out "match "; pp_term out e c v; + out " of "; pp_uri out a; out (Printf.sprintf "/%u" m); + out " to "; pp_term out e c w; + xiter out " cases " " | " "" (pp_term out e c) vs + | C.Prod (s, w, t) -> + out "forall "; pp_name out s; out " of "; pp_term out e c w; + out " in "; pp_term out e (abst s w :: c) t + | C.Lambda (s, w, t) -> + out "fun "; pp_name out s; out " of "; pp_term out e c w; + out " in "; pp_term out e (abst s w :: c) t + | C.LetIn (s, v, w, t) -> + out "let "; pp_name out s; + out " def "; pp_term out e c v; out " of "; pp_term out e c w; + out " in "; pp_term out e (abbr s v w :: c) t + | C.Fix (i, fs) -> + let map c (s, _, w, v) = abbr (C.Name s) v w :: c in + let c' = List.fold_left map c fs in + let map (s, i, w, v) = + out (Printf.sprintf "%s[%u] def " s i); pp_term out e c' v; + out " of "; pp_term out e c w; + in + xiter out "let rec " " and " " in " map fs; pp_rel out c' (succ i) + | C.CoFix (i, fs) -> + let map c (s, w, v) = abbr (C.Name s) v w :: c in + let c' = List.fold_left map c fs in + let map (s, w, v) = + out s; pp_term out e c' v; + out " of "; pp_term out e c w; + in + xiter out "let corec " " and " " in " map fs; pp_rel out c' (succ i) + +and pp_xss out e c xss = + let map (a, v) = pp_uri out a; out " <- "; pp_term out e c v in + xiter out "[" "; " "]" map xss + +let pp_int out i = + out (Printf.sprintf "%u" i) + +let pp_attrs out attrs = + let map = function + | _ -> () + in + xiter out "[" "; " "] " map attrs + +let pp_pars out pars = + xiter out " (" ", " ")\n" (pp_uri out) pars + +let pp_point out point = + if point then out "ind " else out "coind " + +let pp_constructor out (s, w) = + out s; out " of "; pp_term out [] [] w + +let pp_definition out (s, point, w, ts) = + out "let "; pp_point out point; out s; out " of "; pp_term out [] [] w; + xiter out "\ndef " "\nor " "" (pp_constructor out) ts + +let pp_obj out = function + | C.Constant (s, None, u, pars, attrs) -> + out "fun "; pp_attrs out attrs; out s; pp_pars out pars; + out " of "; pp_term out [] [] u + | C.Constant (s, Some t, u, pars, attrs) -> + out "let "; pp_attrs out attrs; out s; pp_pars out pars; + out " def "; pp_term out [] [] t; out " of "; pp_term out [] [] u + | C.Variable (s, None, u, pars, attrs) -> + out "local fun "; pp_attrs out attrs; out s; pp_pars out pars; + out " of "; pp_term out [] [] u + | C.Variable (s, Some t, u, pars, attrs) -> + out "local let "; pp_attrs out attrs; out s; pp_pars out pars; + out " def "; pp_term out [] [] t; out " of "; pp_term out [] [] u + | C.InductiveDefinition (us, pars, lpsno, attrs) -> + out "Inductive "; pp_attrs out attrs; pp_int out lpsno; pp_pars out pars; + xiter out "" "\n" "" (pp_definition out) us + | C.CurrentProof (s, e, t, u, pars, attrs) -> + out "Current Proof" +