X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Fng_kernel%2FnCicTypeChecker.ml;h=4b00edd05b2878ccea79ea6712540c2cfaf7db2a;hb=44ccb088991b937c54cbe13f0a135e36da9d5d8d;hp=46caae5acbed96d74038abd74ec7ebead2d80f43;hpb=09dc8295b3ec33bfa731189788330ba21b5f1428;p=helm.git diff --git a/helm/software/components/ng_kernel/nCicTypeChecker.ml b/helm/software/components/ng_kernel/nCicTypeChecker.ml index 46caae5ac..4b00edd05 100644 --- a/helm/software/components/ng_kernel/nCicTypeChecker.ml +++ b/helm/software/components/ng_kernel/nCicTypeChecker.ml @@ -28,281 +28,9 @@ let shift_k e (c,rf,x,safes) = (* $Id: cicTypeChecker.ml 8213 2008-03-13 18:48:26Z sacerdot $ *) -(* -exception CicEnvironmentError;; - -(*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) -(*CSC questa funzione e' simile alla are_all_occurrences_positive, ma fa *) -(*CSC dei controlli leggermente diversi. Viene invocata solamente dalla *) -(*CSC strictly_positive *) -(*CSC definizione (giusta???) tratta dalla mail di Hugo ;-) *) -and weakly_positive context n nn uri te = - let module C = Cic in -(*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) - let dummy_mutind = - C.MutInd (HelmLibraryObjects.Datatypes.nat_URI,0,[]) - in - (*CSC: mettere in cicSubstitution *) - let rec subst_inductive_type_with_dummy_mutind = - function - C.MutInd (uri',0,_) when UriManager.eq uri' uri -> - dummy_mutind - | C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> - dummy_mutind - | C.Cast (te,ty) -> subst_inductive_type_with_dummy_mutind te - | C.Prod (name,so,ta) -> - C.Prod (name, subst_inductive_type_with_dummy_mutind so, - subst_inductive_type_with_dummy_mutind ta) - | C.Lambda (name,so,ta) -> - C.Lambda (name, subst_inductive_type_with_dummy_mutind so, - subst_inductive_type_with_dummy_mutind ta) - | C.Appl tl -> - C.Appl (List.map subst_inductive_type_with_dummy_mutind tl) - | C.MutCase (uri,i,outtype,term,pl) -> - C.MutCase (uri,i, - subst_inductive_type_with_dummy_mutind outtype, - subst_inductive_type_with_dummy_mutind term, - List.map subst_inductive_type_with_dummy_mutind pl) - | C.Fix (i,fl) -> - C.Fix (i,List.map (fun (name,i,ty,bo) -> (name,i, - subst_inductive_type_with_dummy_mutind ty, - subst_inductive_type_with_dummy_mutind bo)) fl) - | C.CoFix (i,fl) -> - C.CoFix (i,List.map (fun (name,ty,bo) -> (name, - subst_inductive_type_with_dummy_mutind ty, - subst_inductive_type_with_dummy_mutind bo)) fl) - | C.Const (uri,exp_named_subst) -> - let exp_named_subst' = - List.map - (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) - exp_named_subst - in - C.Const (uri,exp_named_subst') - | C.MutInd (uri,typeno,exp_named_subst) -> - let exp_named_subst' = - List.map - (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) - exp_named_subst - in - C.MutInd (uri,typeno,exp_named_subst') - | C.MutConstruct (uri,typeno,consno,exp_named_subst) -> - let exp_named_subst' = - List.map - (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) - exp_named_subst - in - C.MutConstruct (uri,typeno,consno,exp_named_subst') - | t -> t - in - match CicReduction.whd context te with -(* - C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> true -*) - C.Appl ((C.MutInd (uri',_,_))::tl) when UriManager.eq uri' uri -> true - | C.MutInd (uri',0,_) when UriManager.eq uri' uri -> true - | C.Prod (C.Anonymous,source,dest) -> - strictly_positive context n nn - (subst_inductive_type_with_dummy_mutind source) && - weakly_positive ((Some (C.Anonymous,(C.Decl source)))::context) - (n + 1) (nn + 1) uri dest - | C.Prod (name,source,dest) when - does_not_occur ((Some (name,(C.Decl source)))::context) 0 n dest -> - (* dummy abstraction, so we behave as in the anonimous case *) - strictly_positive context n nn - (subst_inductive_type_with_dummy_mutind source) && - weakly_positive ((Some (name,(C.Decl source)))::context) - (n + 1) (nn + 1) uri dest - | C.Prod (name,source,dest) -> - does_not_occur context n nn - (subst_inductive_type_with_dummy_mutind source)&& - weakly_positive ((Some (name,(C.Decl source)))::context) - (n + 1) (nn + 1) uri dest - | _ -> - raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) - -(* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) -(* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) -and instantiate_parameters params c = - let module C = Cic in - match (c,params) with - (c,[]) -> c - | (C.Prod (_,_,ta), he::tl) -> - instantiate_parameters tl - (CicSubstitution.subst he ta) - | (C.Cast (te,_), _) -> instantiate_parameters params te - | (t,l) -> raise (AssertFailure (lazy "1")) - -and strictly_positive context n nn te = - let module C = Cic in - let module U = UriManager in - match CicReduction.whd context te with - | t when does_not_occur context n nn t -> true - | C.Rel _ -> true - | C.Cast (te,ty) -> - (*CSC: bisogna controllare ty????*) - strictly_positive context n nn te - | C.Prod (name,so,ta) -> - does_not_occur context n nn so && - strictly_positive ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) ta - | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> - List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true - | C.Appl ((C.MutInd (uri,i,exp_named_subst))::tl) -> - let (ok,paramsno,ity,cl,name) = - let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (tl,_,paramsno,_) -> - let (name,_,ity,cl) = List.nth tl i in - (List.length tl = 1, paramsno, ity, cl, name) - (* (true, paramsno, ity, cl, name) *) - | _ -> - raise - (TypeCheckerFailure - (lazy ("Unknown inductive type:" ^ U.string_of_uri uri))) - in - let (params,arguments) = split tl paramsno in - let lifted_params = List.map (CicSubstitution.lift 1) params in - let cl' = - List.map - (fun (_,te) -> - instantiate_parameters lifted_params - (CicSubstitution.subst_vars exp_named_subst te) - ) cl - in - ok && - List.fold_right - (fun x i -> i && does_not_occur context n nn x) - arguments true && - (*CSC: MEGAPATCH3 (sara' quella giusta?)*) - List.fold_right - (fun x i -> - i && - weakly_positive - ((Some (C.Name name,(Cic.Decl ity)))::context) (n+1) (nn+1) uri - x - ) cl' true - | t -> false - -(* the inductive type indexes are s.t. n < x <= nn *) -and are_all_occurrences_positive context uri indparamsno i n nn te = - let module C = Cic in - match CicReduction.whd context te with - C.Appl ((C.Rel m)::tl) when m = i -> - (*CSC: riscrivere fermandosi a 0 *) - (* let's check if the inductive type is applied at least to *) - (* indparamsno parameters *) - let last = - List.fold_left - (fun k x -> - if k = 0 then 0 - else - match CicReduction.whd context x with - C.Rel m when m = n - (indparamsno - k) -> k - 1 - | _ -> - raise (TypeCheckerFailure - (lazy - ("Non-positive occurence in mutual inductive definition(s) [1]" ^ - UriManager.string_of_uri uri))) - ) indparamsno tl - in - if last = 0 then - List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true - else - raise (TypeCheckerFailure - (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ - UriManager.string_of_uri uri))) - | C.Rel m when m = i -> - if indparamsno = 0 then - true - else - raise (TypeCheckerFailure - (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ - UriManager.string_of_uri uri))) - | C.Prod (C.Anonymous,source,dest) -> - let b = strictly_positive context n nn source in - b && - are_all_occurrences_positive - ((Some (C.Anonymous,(C.Decl source)))::context) uri indparamsno - (i+1) (n + 1) (nn + 1) dest - | C.Prod (name,source,dest) when - does_not_occur ((Some (name,(C.Decl source)))::context) 0 n dest -> - (* dummy abstraction, so we behave as in the anonimous case *) - strictly_positive context n nn source && - are_all_occurrences_positive - ((Some (name,(C.Decl source)))::context) uri indparamsno - (i+1) (n + 1) (nn + 1) dest - | C.Prod (name,source,dest) -> - does_not_occur context n nn source && - are_all_occurrences_positive ((Some (name,(C.Decl source)))::context) - uri indparamsno (i+1) (n + 1) (nn + 1) dest - | _ -> - raise - (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ - (UriManager.string_of_uri uri)))) - -(* Main function to checks the correctness of a mutual *) -(* inductive block definition. This is the function *) -(* exported to the proof-engine. *) -and typecheck_mutual_inductive_defs ~logger uri (itl,_,indparamsno) ugraph = - let module U = UriManager in - (* let's check if the arity of the inductive types are well *) - (* formed *) - let ugrap1 = List.fold_left - (fun ugraph (_,_,x,_) -> let _,ugraph' = - type_of ~logger x ugraph in ugraph') - ugraph itl in - - (* let's check if the types of the inductive constructors *) - (* are well formed. *) - (* In order not to use type_of_aux we put the types of the *) - (* mutual inductive types at the head of the types of the *) - (* constructors using Prods *) - let len = List.length itl in - let tys = - List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in - let _,ugraph2 = - List.fold_right - (fun (_,_,_,cl) (i,ugraph) -> - let ugraph'' = - List.fold_left - (fun ugraph (name,te) -> - let debruijnedte = debruijn uri len te in - let augmented_term = - List.fold_right - (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) - itl debruijnedte - in - let _,ugraph' = type_of ~logger augmented_term ugraph in - (* let's check also the positivity conditions *) - if - not - (are_all_occurrences_positive tys uri indparamsno i 0 len - debruijnedte) - then - begin - prerr_endline (UriManager.string_of_uri uri); - prerr_endline (string_of_int (List.length tys)); - raise - (TypeCheckerFailure - (lazy ("Non positive occurence in " ^ U.string_of_uri uri))) end - else - ugraph' - ) ugraph cl in - (i + 1),ugraph'' - ) itl (1,ugrap1) - in - ugraph2 -(* Main function to checks the correctness of a mutual *) -(* inductive block definition. *) -and check_mutual_inductive_defs uri obj ugraph = - match obj with - Cic.InductiveDefinition (itl, params, indparamsno, _) -> - typecheck_mutual_inductive_defs uri (itl,params,indparamsno) ugraph - | _ -> - raise (TypeCheckerFailure ( - lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) +(* (* the boolean h means already protected *) (* args is the list of arguments the type of the constructor that may be *) (* found in head position must be applied to. *) @@ -584,7 +312,7 @@ let debruijn ?(cb=fun _ _ -> ()) uri number_of_types = aux 0 ;; -let sort_of_prod ~subst context (name,s) (t1, t2) = +let sort_of_prod ~metasenv ~subst context (name,s) (t1, t2) = let t1 = R.whd ~subst context t1 in let t2 = R.whd ~subst ((name,C.Decl s)::context) t2 in match t1, t2 with @@ -599,19 +327,21 @@ let sort_of_prod ~subst context (name,s) (t1, t2) = | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Prod: expected two sorts, found = %s, %s" - (NCicPp.ppterm t1) (NCicPp.ppterm t2)))) + (NCicPp.ppterm ~subst ~metasenv ~context t1) + (NCicPp.ppterm ~subst ~metasenv ~context t2)))) ;; -let eat_prods ~subst ~metasenv context ty_he args_with_ty = +let eat_prods ~subst ~metasenv context he ty_he args_with_ty = let rec aux ty_he = function | [] -> ty_he | (arg, ty_arg)::tl -> - (match R.whd ~subst context ty_he with + match R.whd ~subst context ty_he with | C.Prod (n,s,t) -> (* - prerr_endline (NCicPp.ppterm ~context s ^ " - Vs - " ^ NCicPp.ppterm + prerr_endline (NCicPp.ppterm ~subst ~metasenv ~context s ^ " - Vs - " + ^ NCicPp.ppterm ~subst ~metasenv ~context ty_arg); - prerr_endline (NCicPp.ppterm ~context (S.subst ~avoid_beta_redexes:true arg t)); + prerr_endline (NCicPp.ppterm ~subst ~metasenv ~context (S.subst ~avoid_beta_redexes:true arg t)); *) if R.are_convertible ~subst ~metasenv context ty_arg s then aux (S.subst ~avoid_beta_redexes:true arg t) tl @@ -619,12 +349,23 @@ let eat_prods ~subst ~metasenv context ty_he args_with_ty = raise (TypeCheckerFailure (lazy (Printf.sprintf - ("Appl: wrong parameter-type, expected %s, found %s") - (NCicPp.ppterm ty_arg) (NCicPp.ppterm s)))) + ("Appl: wrong application of %s: the parameter %s has type"^^ + "\n%s\nbut it should have type \n%s\n") + (NCicPp.ppterm ~subst ~metasenv ~context he) + (NCicPp.ppterm ~subst ~metasenv ~context arg) + (NCicPp.ppterm ~subst ~metasenv ~context ty_arg) + (NCicPp.ppterm ~subst ~metasenv ~context s)))) | _ -> raise (TypeCheckerFailure - (lazy "Appl: this is not a function, it cannot be applied"))) + (lazy (Printf.sprintf + "Appl: %s is not a function, it cannot be applied" + (NCicPp.ppterm ~subst ~metasenv ~context + (let res = List.length tl in + let eaten = List.length args_with_ty - res in + (NCic.Appl + (he::List.map fst + (fst (HExtlib.split_nth eaten args_with_ty))))))))) in aux ty_he args_with_ty ;; @@ -642,7 +383,7 @@ let fix_lefts_in_constrs ~subst uri paramsno tyl i = cl in let lefts = fst (split_prods ~subst [] paramsno arity) in - tys@lefts, len, cl' + lefts@tys, len, cl' ;; exception DoesOccur;; @@ -669,7 +410,121 @@ let does_not_occur ~subst context n nn t = with DoesOccur -> false ;; -exception NotGuarded;; +(*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) +(*CSC questa funzione e' simile alla are_all_occurrences_positive, ma fa *) +(*CSC dei controlli leggermente diversi. Viene invocata solamente dalla *) +(*CSC strictly_positive *) +(*CSC definizione (giusta???) tratta dalla mail di Hugo ;-) *) +let rec weakly_positive ~subst context n nn uri te = +(*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) + let dummy = C.Sort (C.Type ~-1) in + (*CSC: mettere in cicSubstitution *) + let rec subst_inductive_type_with_dummy _ = function + | C.Const (Ref.Ref (_,uri',Ref.Ind 0)) when NUri.eq uri' uri -> dummy + | C.Appl ((C.Const (Ref.Ref (_,uri',Ref.Ind 0)))::tl) + when NUri.eq uri' uri -> dummy + | t -> U.map (fun _ x->x) () subst_inductive_type_with_dummy t + in + match R.whd context te with + | C.Const (Ref.Ref (_,uri',Ref.Ind _)) + | C.Appl ((C.Const (Ref.Ref (_,uri',Ref.Ind _)))::_) + when NUri.eq uri' uri -> true + | C.Prod (name,source,dest) when + does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> + (* dummy abstraction, so we behave as in the anonimous case *) + strictly_positive ~subst context n nn + (subst_inductive_type_with_dummy () source) && + weakly_positive ~subst ((name,C.Decl source)::context) + (n + 1) (nn + 1) uri dest + | C.Prod (name,source,dest) -> + does_not_occur ~subst context n nn + (subst_inductive_type_with_dummy () source)&& + weakly_positive ~subst ((name,C.Decl source)::context) + (n + 1) (nn + 1) uri dest + | _ -> + raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) + +(* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) +(* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) +and instantiate_parameters params c = + match c, params with + | c,[] -> c + | C.Prod (_,_,ta), he::tl -> instantiate_parameters tl (S.subst he ta) + | t,l -> raise (AssertFailure (lazy "1")) + +and strictly_positive ~subst context n nn te = + match R.whd context te with + | t when does_not_occur ~subst context n nn t -> true + | C.Rel _ -> true + | C.Prod (name,so,ta) -> + does_not_occur ~subst context n nn so && + strictly_positive ~subst ((name,C.Decl so)::context) (n+1) (nn+1) ta + | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> + List.for_all (does_not_occur ~subst context n nn) tl + | C.Appl (C.Const (Ref.Ref (_,uri,Ref.Ind i) as r)::tl) -> + let _,paramsno,tyl,_,i = E.get_checked_indtys r in + let _,name,ity,cl = List.nth tyl i in + let ok = List.length tyl = 1 in + let params, arguments = HExtlib.split_nth paramsno tl in + let lifted_params = List.map (S.lift 1) params in + let cl = + List.map (fun (_,_,te) -> instantiate_parameters lifted_params te) cl + in + ok && + List.for_all (does_not_occur ~subst context n nn) arguments && + List.for_all + (weakly_positive ~subst ((name,C.Decl ity)::context) (n+1) (nn+1) uri) cl + | _ -> false + +(* the inductive type indexes are s.t. n < x <= nn *) +and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = + match R.whd context te with + | C.Appl ((C.Rel m)::tl) as reduct when m = i -> + let last = + List.fold_left + (fun k x -> + if k = 0 then 0 + else + match R.whd context x with + | C.Rel m when m = n - (indparamsno - k) -> k - 1 + | y -> raise (TypeCheckerFailure (lazy + ("Argument "^string_of_int (indparamsno - k + 1) ^ " (of " ^ + string_of_int indparamsno ^ " fixed) is not homogeneous in "^ + "appl:\n"^ NCicPp.ppterm ~context ~subst ~metasenv:[] reduct)))) + indparamsno tl + in + if last = 0 then + List.for_all (does_not_occur ~subst context n nn) tl + else + raise (TypeCheckerFailure + (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ + NUri.string_of_uri uri))) + | C.Rel m when m = i -> + if indparamsno = 0 then + true + else + raise (TypeCheckerFailure + (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ + NUri.string_of_uri uri))) + | C.Prod (name,source,dest) when + does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> + strictly_positive ~subst context n nn source && + are_all_occurrences_positive ~subst + ((name,C.Decl source)::context) uri indparamsno + (i+1) (n + 1) (nn + 1) dest + | C.Prod (name,source,dest) -> + if not (does_not_occur ~subst context n nn source) then + raise (TypeCheckerFailure (lazy ("Non-positive occurrence in "^ + NCicPp.ppterm ~context ~metasenv:[] ~subst te))); + are_all_occurrences_positive ~subst ((name,C.Decl source)::context) + uri indparamsno (i+1) (n + 1) (nn + 1) dest + | _ -> + raise + (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ + (NUri.string_of_uri uri)))) +;; + +exception NotGuarded of string Lazy.t;; let rec typeof ~subst ~metasenv context term = let rec typeof_aux context = @@ -685,22 +540,22 @@ let rec typeof ~subst ~metasenv context term = | C.Sort s -> C.Sort (C.Type 0) | C.Implicit _ -> raise (AssertFailure (lazy "Implicit found")) | C.Meta (n,l) as t -> - let canonical_context,ty = + let canonical_ctx,ty = try let _,c,_,ty = U.lookup_subst n subst in c,ty with U.Subst_not_found _ -> try let _,_,c,ty = U.lookup_meta n metasenv in c,ty with U.Meta_not_found _ -> raise (AssertFailure (lazy (Printf.sprintf - "%s not found" (NCicPp.ppterm t)))) + "%s not found" (NCicPp.ppterm ~subst ~metasenv ~context t)))) in - check_metasenv_consistency t context canonical_context l; + check_metasenv_consistency t ~subst ~metasenv context canonical_ctx l; S.subst_meta l ty | C.Const ref -> type_of_constant ref | C.Prod (name,s,t) -> let sort1 = typeof_aux context s in let sort2 = typeof_aux ((name,(C.Decl s))::context) t in - sort_of_prod ~subst context (name,s) (sort1,sort2) + sort_of_prod ~metasenv ~subst context (name,s) (sort1,sort2) | C.Lambda (n,s,t) -> let sort = typeof_aux context s in (match R.whd ~subst context sort with @@ -710,17 +565,21 @@ let rec typeof ~subst ~metasenv context term = (TypeCheckerFailure (lazy (Printf.sprintf ("Not well-typed lambda-abstraction: " ^^ "the source %s should be a type; instead it is a term " ^^ - "of type %s") (NCicPp.ppterm s) (NCicPp.ppterm sort))))); + "of type %s") (NCicPp.ppterm ~subst ~metasenv ~context s) + (NCicPp.ppterm ~subst ~metasenv ~context sort))))); let ty = typeof_aux ((n,(C.Decl s))::context) t in C.Prod (n,s,ty) | C.LetIn (n,ty,t,bo) -> let ty_t = typeof_aux context t in + let _ = typeof_aux context ty in if not (R.are_convertible ~subst ~metasenv context ty ty_t) then raise (TypeCheckerFailure (lazy (Printf.sprintf "The type of %s is %s but it is expected to be %s" - (NCicPp.ppterm t) (NCicPp.ppterm ty_t) (NCicPp.ppterm ty)))) + (NCicPp.ppterm ~subst ~metasenv ~context t) + (NCicPp.ppterm ~subst ~metasenv ~context ty_t) + (NCicPp.ppterm ~subst ~metasenv ~context ty)))) else let ty_bo = typeof_aux ((n,C.Def (t,ty))::context) bo in S.subst ~avoid_beta_redexes:true t ty_bo @@ -728,17 +587,20 @@ let rec typeof ~subst ~metasenv context term = let ty_he = typeof_aux context he in let args_with_ty = List.map (fun t -> t, typeof_aux context t) args in (* - prerr_endline ("HEAD: " ^ NCicPp.ppterm ~context ty_he); + prerr_endline ("HEAD: " ^ NCicPp.ppterm ~subst ~metasenv ~context ty_he); prerr_endline ("TARGS: " ^ String.concat " | " (List.map (NCicPp.ppterm - ~context) (List.map snd args_with_ty))); + ~subst ~metasenv ~context) (List.map snd args_with_ty))); prerr_endline ("ARGS: " ^ String.concat " | " (List.map (NCicPp.ppterm - ~context) (List.map fst args_with_ty))); + ~subst ~metasenv ~context) (List.map fst args_with_ty))); *) - eat_prods ~subst ~metasenv context ty_he args_with_ty + eat_prods ~subst ~metasenv context he ty_he args_with_ty | C.Appl _ -> raise (AssertFailure (lazy "Appl of length < 2")) | C.Match (Ref.Ref (_,_,Ref.Ind tyno) as r,outtype,term,pl) -> let outsort = typeof_aux context outtype in - let leftno = E.get_indty_leftno r in + let inductive,leftno,itl,_,_ = E.get_checked_indtys r in + let constructorsno = + let _,_,_,cl = List.nth itl tyno in List.length cl + in let parameters, arguments = let ty = R.whd ~subst context (typeof_aux context term) in let r',tl = @@ -749,34 +611,29 @@ let rec typeof ~subst ~metasenv context term = raise (TypeCheckerFailure (lazy (Printf.sprintf "Case analysis: analysed term %s is not an inductive one" - (NCicPp.ppterm term)))) in + (NCicPp.ppterm ~subst ~metasenv ~context term)))) in if not (Ref.eq r r') then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Case analysys: analysed term type is %s, but is expected " ^^ "to be (an application of) %s") - (NCicPp.ppterm ty) (NCicPp.ppterm (C.Const r'))))) + (NCicPp.ppterm ~subst ~metasenv ~context ty) + (NCicPp.ppterm ~subst ~metasenv ~context (C.Const r'))))) else try HExtlib.split_nth leftno tl with Failure _ -> - raise (TypeCheckerFailure (lazy (Printf.sprintf - "%s is partially applied" (NCicPp.ppterm ty)))) in + raise (TypeCheckerFailure (lazy (Printf.sprintf + "%s is partially applied" + (NCicPp.ppterm ~subst ~metasenv ~context ty)))) in (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) let sort_of_ind_type = if parameters = [] then C.Const r else C.Appl ((C.Const r)::parameters) in let type_of_sort_of_ind_ty = typeof_aux context sort_of_ind_type in - if not (check_allowed_sort_elimination ~subst ~metasenv r context - sort_of_ind_type type_of_sort_of_ind_ty outsort) - then raise (TypeCheckerFailure (lazy ("Sort elimination not allowed"))); + check_allowed_sort_elimination ~subst ~metasenv r context + sort_of_ind_type type_of_sort_of_ind_ty outsort; (* let's check if the type of branches are right *) - let leftno,constructorsno = - let inductive,leftno,itl,_,i = E.get_checked_indtys r in - let _,name,ty,cl = List.nth itl i in - let cl_len = List.length cl in - leftno, cl_len - in if List.length pl <> constructorsno then raise (TypeCheckerFailure (lazy ("Wrong number of cases in a match"))); let j,branches_ok,p_ty, exp_p_ty = @@ -803,10 +660,12 @@ let rec typeof ~subst ~metasenv context term = raise (TypeCheckerFailure (lazy (Printf.sprintf ("Branch for constructor %s :=\n%s\n"^^ - "has type %s\nnot convertible with %s") (NCicPp.ppterm (C.Const - (Ref.mk_constructor j r))) - (NCicPp.ppterm ~context (List.nth pl (j-1))) - (NCicPp.ppterm ~context p_ty) (NCicPp.ppterm ~context exp_p_ty)))); + "has type %s\nnot convertible with %s") + (NCicPp.ppterm ~subst ~metasenv ~context + (C.Const (Ref.mk_constructor (j-1) r))) + (NCicPp.ppterm ~metasenv ~subst ~context (List.nth pl (j-2))) + (NCicPp.ppterm ~metasenv ~subst ~context p_ty) + (NCicPp.ppterm ~metasenv ~subst ~context exp_p_ty)))); let res = outtype::arguments@[term] in R.head_beta_reduce (C.Appl res) | C.Match _ -> assert false @@ -831,7 +690,9 @@ let rec typeof ~subst ~metasenv context term = (* check_metasenv_consistency checks that the "canonical" context of a metavariable is consitent - up to relocation via the relocation list l - with the actual context *) - and check_metasenv_consistency term context canonical_context l = + and check_metasenv_consistency + ~subst ~metasenv term context canonical_context l + = match l with | shift, NCic.Irl n -> let context = snd (HExtlib.split_nth shift context) in @@ -841,10 +702,11 @@ let rec typeof ~subst ~metasenv context term = | _,_,[] -> raise (AssertFailure (lazy (Printf.sprintf "Local and canonical context %s have different lengths" - (NCicPp.ppterm term)))) + (NCicPp.ppterm ~subst ~context ~metasenv term)))) | m,[],_::_ -> raise (TypeCheckerFailure (lazy (Printf.sprintf - "Unbound variable -%d in %s" m (NCicPp.ppterm term)))) + "Unbound variable -%d in %s" m + (NCicPp.ppterm ~subst ~metasenv ~context term)))) | m,t::tl,ct::ctl -> (match t,ct with (_,C.Decl t1), (_,C.Decl t2) @@ -856,15 +718,15 @@ let rec typeof ~subst ~metasenv context term = (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "%s expected, which is not convertible with %s") - (NCicPp.ppterm term) (NCicPp.ppterm t2) (NCicPp.ppterm t1) - ))) + (NCicPp.ppterm ~subst ~metasenv ~context term) + (NCicPp.ppterm ~subst ~metasenv ~context t2) + (NCicPp.ppterm ~subst ~metasenv ~context t1)))) | _,_ -> raise - (TypeCheckerFailure - (lazy (Printf.sprintf + (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "a definition expected, but a declaration found") - (NCicPp.ppterm term))))); + (NCicPp.ppterm ~subst ~metasenv ~context term))))); compare (m - 1,tl,ctl) in compare (n,context,canonical_context) @@ -908,7 +770,8 @@ let rec typeof ~subst ~metasenv context term = (lazy (Printf.sprintf ("Not well typed metavariable local context: " ^^ "expected a term convertible with %s, found %s") - (NCicPp.ppterm ct) (NCicPp.ppterm t)))) + (NCicPp.ppterm ~subst ~metasenv ~context ct) + (NCicPp.ppterm ~subst ~metasenv ~context t)))) | t, (_,C.Decl ct) -> let type_t = typeof_aux context t in if not (R.are_convertible ~subst ~metasenv context type_t ct) then @@ -916,13 +779,15 @@ let rec typeof ~subst ~metasenv context term = (lazy (Printf.sprintf ("Not well typed metavariable local context: "^^ "expected a term of type %s, found %s of type %s") - (NCicPp.ppterm ct) (NCicPp.ppterm t) (NCicPp.ppterm type_t)))) + (NCicPp.ppterm ~subst ~metasenv ~context ct) + (NCicPp.ppterm ~subst ~metasenv ~context t) + (NCicPp.ppterm ~subst ~metasenv ~context type_t)))) ) l lifted_canonical_context with Invalid_argument _ -> raise (AssertFailure (lazy (Printf.sprintf "Local and canonical context %s have different lengths" - (NCicPp.ppterm term)))) + (NCicPp.ppterm ~subst ~metasenv ~context term)))) and is_non_informative context paramsno c = let rec aux context c = @@ -944,61 +809,116 @@ let rec typeof ~subst ~metasenv context term = let arity2 = R.whd ~subst context arity2 in match arity1,arity2 with | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> - R.are_convertible ~subst ~metasenv context so1 so2 && - aux ((name, C.Decl so1)::context) - (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 + if not (R.are_convertible ~subst ~metasenv context so1 so2) then + raise (TypeCheckerFailure (lazy (Printf.sprintf + "In outtype: expected %s, found %s" + (NCicPp.ppterm ~subst ~metasenv ~context so1) + (NCicPp.ppterm ~subst ~metasenv ~context so2) + ))); + aux ((name, C.Decl so1)::context) + (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 | C.Sort _, C.Prod (name,so,ta) -> - (R.are_convertible ~subst ~metasenv context so ind && - match arity1,ta with - | (C.Sort (C.CProp | C.Type _), C.Sort _) - | (C.Sort C.Prop, C.Sort C.Prop) -> true - | (C.Sort C.Prop, C.Sort (C.CProp | C.Type _)) -> - let inductive,leftno,itl,_,i = E.get_checked_indtys r in - let itl_len = List.length itl in - let _,name,ty,cl = List.nth itl i in - let cl_len = List.length cl in - (* is it a singleton or empty non recursive and non informative - definition? *) - cl_len = 0 || - (itl_len = 1 && cl_len = 1 && - is_non_informative [name,C.Decl ty] leftno - (let _,_,x = List.nth cl 0 in x)) - | _,_ -> false) - | _,_ -> false + if not (R.are_convertible ~subst ~metasenv context so ind) then + raise (TypeCheckerFailure (lazy (Printf.sprintf + "In outtype: expected %s, found %s" + (NCicPp.ppterm ~subst ~metasenv ~context ind) + (NCicPp.ppterm ~subst ~metasenv ~context so) + ))); + (match arity1,ta with + | (C.Sort (C.CProp | C.Type _), C.Sort _) + | (C.Sort C.Prop, C.Sort C.Prop) -> () + | (C.Sort C.Prop, C.Sort (C.CProp | C.Type _)) -> + (* TODO: we should pass all these parameters since we + * have them already *) + let inductive,leftno,itl,_,i = E.get_checked_indtys r in + let itl_len = List.length itl in + let _,name,ty,cl = List.nth itl i in + let cl_len = List.length cl in + (* is it a singleton or empty non recursive and non informative + definition? *) + if not + (cl_len = 0 || + (itl_len = 1 && cl_len = 1 && + is_non_informative [name,C.Decl ty] leftno + (let _,_,x = List.nth cl 0 in x))) + then + raise (TypeCheckerFailure (lazy + ("Sort elimination not allowed"))); + | _,_ -> ()) + | _,_ -> () in aux in typeof_aux context term -and check_mutual_inductive_defs _ = () +and check_mutual_inductive_defs uri ~metasenv ~subst is_ind leftno tyl = + (* let's check if the arity of the inductive types are well formed *) + List.iter (fun (_,_,x,_) -> ignore (typeof ~subst ~metasenv [] x)) tyl; + (* let's check if the types of the inductive constructors are well formed. *) + let len = List.length tyl in + let tys = List.rev (List.map (fun (_,n,ty,_) -> (n,(C.Decl ty))) tyl) in + ignore + (List.fold_right + (fun (_,_,_,cl) i -> + List.iter + (fun (_,name,te) -> + let debruijnedte = debruijn uri len te in + ignore (typeof ~subst ~metasenv tys debruijnedte); + (* let's check also the positivity conditions *) + if + not + (are_all_occurrences_positive ~subst tys uri leftno i 0 len + debruijnedte) + then + raise + (TypeCheckerFailure + (lazy ("Non positive occurence in "^NUri.string_of_uri uri)))) + cl; + i + 1) + tyl 1) -and eat_lambdas ~subst context n te = +and eat_lambdas ~subst ~metasenv context n te = match (n, R.whd ~subst context te) with | (0, _) -> (te, context) | (n, C.Lambda (name,so,ta)) when n > 0 -> - eat_lambdas ~subst ((name,(C.Decl so))::context) (n - 1) ta + eat_lambdas ~subst ~metasenv ((name,(C.Decl so))::context) (n - 1) ta | (n, te) -> - raise (AssertFailure - (lazy (Printf.sprintf "9 (%d, %s)" n (NCicPp.ppterm te)))) + raise (AssertFailure (lazy (Printf.sprintf "9 (%d, %s)" n + (NCicPp.ppterm ~subst ~metasenv ~context te)))) -and guarded_by_destructors ~subst context recfuns t = +and guarded_by_destructors ~subst ~metasenv context recfuns t = let recursor f k t = NCicUtils.fold shift_k k (fun k () -> f k) () t in - let rec aux (context, recfuns, x, safes as k) = function - | C.Rel m when List.mem_assoc m recfuns -> raise NotGuarded + let rec aux (context, recfuns, x, safes as k) t = + match R.whd ~subst context t with (* TODO: use ~delta:false as mush as poss*) + | C.Rel m as t when List.mem_assoc m recfuns -> + raise (NotGuarded (lazy + (NCicPp.ppterm ~subst ~metasenv ~context t ^ " passed around"))) | C.Rel m -> (match List.nth context (m-1) with | _,C.Decl _ -> () | _,C.Def (bo,_) -> aux (context, recfuns, x, safes) (S.lift m bo)) | C.Meta _ -> () - | C.Appl ((C.Rel m)::tl) when List.mem_assoc m recfuns -> + | C.Appl ((C.Rel m)::tl) as t when List.mem_assoc m recfuns -> let rec_no = List.assoc m recfuns in - if not (List.length tl > rec_no) then raise NotGuarded + if not (List.length tl > rec_no) then + raise (NotGuarded (lazy + (NCicPp.ppterm ~context ~subst ~metasenv t ^ + " is a partial application of a fix"))) else let rec_arg = List.nth tl rec_no in - if not (is_really_smaller ~subst k rec_arg) then raise - NotGuarded; + if not (is_really_smaller ~subst ~metasenv k rec_arg) then + raise (NotGuarded (lazy + (NCicPp.ppterm ~context ~subst ~metasenv rec_arg ^ " not smaller"))); List.iter (aux k) tl + (* + | C.Appl (C.Const ((Ref.Ref (_,_,Ref.Fix (i,j))) as r)::args) -> + List.iter (aux k) args; + let fixes,_,_ = E.get_checked_fixes r in + let _,_,_,_,bo = List.nth fixes i in + let bo_wout_lam, context = eat_lambdas ~subst ~metasenv context j in + (* debruijna body..... *) assert false +*) | C.Match (Ref.Ref (_,uri,_) as ref,outtype,term,pl) as t -> (match R.whd ~subst context term with | C.Rel m | C.Appl (C.Rel m :: _ ) as t when List.mem m safes || m = x -> @@ -1011,15 +931,15 @@ and guarded_by_destructors ~subst context recfuns t = List.iter (aux k) args; List.iter2 (fun p (_,_,bruijnedc) -> - let rl = recursive_args ~subst c_ctx 0 len bruijnedc in + let rl = recursive_args ~subst ~metasenv c_ctx 0 len bruijnedc in let p, k = get_new_safes ~subst k p rl in aux k p) pl cl | _ -> recursor aux k t) | t -> recursor aux k t in - try aux (context, recfuns, 1, []) t;true - with NotGuarded -> false + try aux (context, recfuns, 1, []) t + with NotGuarded s -> raise (TypeCheckerFailure s) (* | C.Fix (_, fl) -> @@ -1061,15 +981,18 @@ and guarded_by_destructors ~subst context recfuns t = ) fl true *) -and guarded_by_constructors ~subst _ _ _ _ _ _ _ = assert false +and guarded_by_constructors ~subst ~metasenv _ _ _ _ _ _ _ = true -and recursive_args ~subst context n nn te = +and recursive_args ~subst ~metasenv context n nn te = match R.whd context te with - | C.Rel _ -> [] + | C.Rel _ | C.Appl _ -> [] | C.Prod (name,so,de) -> (not (does_not_occur ~subst context n nn so)) :: - (recursive_args ~subst ((name,(C.Decl so))::context) (n+1) (nn + 1) de) - | _ -> raise (AssertFailure (lazy ("recursive_args"))) + (recursive_args ~subst ~metasenv + ((name,(C.Decl so))::context) (n+1) (nn + 1) de) + | t -> + raise (AssertFailure (lazy ("recursive_args:" ^ NCicPp.ppterm ~subst + ~metasenv ~context:[] t))) and get_new_safes ~subst (context, recfuns, x, safes as k) p rl = match R.whd ~subst context p, rl with @@ -1087,20 +1010,15 @@ and split_prods ~subst context n te = split_prods ~subst ((name,(C.Decl so))::context) (n - 1) ta | _ -> raise (AssertFailure (lazy "split_prods")) -and is_really_smaller ~subst (context, recfuns, x, safes as k) te = +and is_really_smaller ~subst ~metasenv (context, recfuns, x, safes as k) te = match R.whd ~subst context te with | C.Rel m when List.mem m safes -> true - | C.Rel _ -> false - | C.LetIn _ -> raise (AssertFailure (lazy "letin after whd")) - | C.Sort _ | C.Implicit _ | C.Prod _ | C.Lambda _ - | C.Const (Ref.Ref (_,_,(Ref.Decl | Ref.Def | Ref.Ind _ | Ref.CoFix _))) -> - raise (AssertFailure (lazy "not a constructor")) - | C.Appl ([]|[_]) -> raise (AssertFailure (lazy "empty/unary appl")) + | C.Lambda (name, s, t) -> + is_really_smaller ~subst ~metasenv (shift_k (name, C.Decl s) k) t | C.Appl (he::_) -> - (*CSC: sulla coda ci vogliono dei controlli? secondo noi no, ma *) - (*CSC: solo perche' non abbiamo trovato controesempi *) - (*TASSI: da capire soprattutto se he è un altro fix che non ha ridotto...*) - is_really_smaller ~subst k he + is_really_smaller ~subst ~metasenv k he + | C.Appl _ + | C.Rel _ | C.Const (Ref.Ref (_,_,Ref.Con _)) -> false | C.Const (Ref.Ref (_,_,Ref.Fix _)) -> assert false (*| C.Fix (_, fl) -> @@ -1121,24 +1039,23 @@ and is_really_smaller ~subst (context, recfuns, x, safes as k) te = is_really_smaller ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true*) - | C.Meta _ -> - true (* XXX if this check is repeated when the user completes the - definition *) + | C.Meta _ -> true | C.Match (Ref.Ref (_,uri,_) as ref,outtype,term,pl) -> (match term with | C.Rel m | C.Appl (C.Rel m :: _ ) when List.mem m safes || m = x -> let isinductive, paramsno, tl, _, i = E.get_checked_indtys ref in if not isinductive then - List.for_all (is_really_smaller ~subst k) pl + List.for_all (is_really_smaller ~subst ~metasenv k) pl else let c_ctx,len,cl = fix_lefts_in_constrs ~subst uri paramsno tl i in List.for_all2 (fun p (_,_,debruijnedte) -> - let rl' = recursive_args ~subst c_ctx 0 len debruijnedte in + let rl'=recursive_args ~subst ~metasenv c_ctx 0 len debruijnedte in let e, k = get_new_safes ~subst k p rl' in - is_really_smaller ~subst k e) + is_really_smaller ~subst ~metasenv k e) pl cl - | _ -> List.for_all (is_really_smaller ~subst k) pl) + | _ -> List.for_all (is_really_smaller ~subst ~metasenv k) pl) + | _ -> assert false and returns_a_coinductive ~subst context ty = match R.whd ~subst context ty with @@ -1159,8 +1076,6 @@ and type_of_constant ((Ref.Ref (_,uri,_)) as ref) = check_obj_well_typed uobj; E.add_obj uobj; !logger (`Type_checking_completed uri); - if not (fst (E.get_obj uri)) then - raise (AssertFailure (lazy "environment error")); uobj in match cobj, ref with @@ -1181,17 +1096,21 @@ and check_obj_well_typed (uri,height,metasenv,subst,kind) = assert (metasenv = [] && subst = []); match kind with | C.Constant (_,_,Some te,ty,_) -> - prerr_endline ("TY: " ^ NCicPp.ppterm ty); - prerr_endline ("BO: " ^ NCicPp.ppterm te); +(* + prerr_endline ("TY: " ^ NCicPp.ppterm ~subst ~metasenv ~context:[] ty); + prerr_endline ("BO: " ^ NCicPp.ppterm ~subst ~metasenv ~context:[] te); +*) let _ = typeof ~subst ~metasenv [] ty in let ty_te = typeof ~subst ~metasenv [] te in - prerr_endline "XXXX"; +(* prerr_endline "XXXX"; *) if not (R.are_convertible ~subst ~metasenv [] ty_te ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf "the type of the body is not the one expected:\n%s\nvs\n%s" - (NCicPp.ppterm ty_te) (NCicPp.ppterm ty)))) + (NCicPp.ppterm ~subst ~metasenv ~context:[] ty_te) + (NCicPp.ppterm ~subst ~metasenv ~context:[] ty)))) | C.Constant (_,_,None,ty,_) -> ignore (typeof ~subst ~metasenv [] ty) - | C.Inductive _ as obj -> check_mutual_inductive_defs obj + | C.Inductive (is_ind, leftno, tyl, _) -> + check_mutual_inductive_defs uri ~metasenv ~subst is_ind leftno tyl | C.Fixpoint (inductive,fl,_) -> let types,kl,len = List.fold_left @@ -1207,14 +1126,13 @@ and check_obj_well_typed (uri,height,metasenv,subst,kind) = then raise (TypeCheckerFailure (lazy ("(Co)Fix: ill-typed bodies"))) else if inductive then begin - let m, context = eat_lambdas ~subst types (x + 1) bo in + let m, context = eat_lambdas ~subst ~metasenv types (x + 1) bo in (* guarded by destructors conditions D{f,k,x,M} *) let rec enum_from k = function [] -> [] | v::tl -> (k,v)::enum_from (k+1) tl in - if not (guarded_by_destructors - ~subst context (enum_from (x+1) kl) m) then - raise(TypeCheckerFailure(lazy("Fix: not guarded by destructors"))) + guarded_by_destructors + ~subst ~metasenv context (enum_from (x+2) kl) m end else match returns_a_coinductive ~subst [] ty with | None -> @@ -1222,7 +1140,7 @@ and check_obj_well_typed (uri,height,metasenv,subst,kind) = (lazy "CoFix: does not return a coinductive type")) | Some uri -> (* guarded by constructors conditions C{f,M} *) - if not (guarded_by_constructors ~subst + if not (guarded_by_constructors ~subst ~metasenv types 0 len false bo [] uri) then raise (TypeCheckerFailure