X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Fng_kernel%2FnCicTypeChecker.ml;h=52526122229417534bd08f25ec79a20b5bf9e103;hb=2b837ca9e298eb44eee95d9ca0e331c577785dcb;hp=f1a99408ab80764685a0486deb696eb070f98ec9;hpb=90a9ceff7dc614e7be0b600fc6c820abd980595a;p=helm.git diff --git a/helm/software/components/ng_kernel/nCicTypeChecker.ml b/helm/software/components/ng_kernel/nCicTypeChecker.ml index f1a99408a..525261222 100644 --- a/helm/software/components/ng_kernel/nCicTypeChecker.ml +++ b/helm/software/components/ng_kernel/nCicTypeChecker.ml @@ -9,636 +9,385 @@ \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) -(* $Id: nCicReduction.ml 8250 2008-03-25 17:56:20Z tassi $ *) +(* $Id$ *) -(* web interface stuff *) - -let logger = - ref (function (`Start_type_checking _|`Type_checking_completed _) -> ()) -;; - -let set_logger f = logger := f;; +module C = NCic +module Ref = NReference +module R = NCicReduction +module S = NCicSubstitution +module U = NCicUtils +module E = NCicEnvironment +module PP = NCicPp exception TypeCheckerFailure of string Lazy.t exception AssertFailure of string Lazy.t -let shift_k e (c,rf,x,safes) = - e::c,List.map (fun (k,v) -> k+1,v) rf,x+1,List.map ((+)1) safes -;; - -(* $Id: cicTypeChecker.ml 8213 2008-03-13 18:48:26Z sacerdot $ *) - -(* -exception CicEnvironmentError;; - -(*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) -(*CSC questa funzione e' simile alla are_all_occurrences_positive, ma fa *) -(*CSC dei controlli leggermente diversi. Viene invocata solamente dalla *) -(*CSC strictly_positive *) -(*CSC definizione (giusta???) tratta dalla mail di Hugo ;-) *) -and weakly_positive context n nn uri te = - let module C = Cic in -(*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) - let dummy_mutind = - C.MutInd (HelmLibraryObjects.Datatypes.nat_URI,0,[]) - in - (*CSC: mettere in cicSubstitution *) - let rec subst_inductive_type_with_dummy_mutind = - function - C.MutInd (uri',0,_) when UriManager.eq uri' uri -> - dummy_mutind - | C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> - dummy_mutind - | C.Cast (te,ty) -> subst_inductive_type_with_dummy_mutind te - | C.Prod (name,so,ta) -> - C.Prod (name, subst_inductive_type_with_dummy_mutind so, - subst_inductive_type_with_dummy_mutind ta) - | C.Lambda (name,so,ta) -> - C.Lambda (name, subst_inductive_type_with_dummy_mutind so, - subst_inductive_type_with_dummy_mutind ta) - | C.Appl tl -> - C.Appl (List.map subst_inductive_type_with_dummy_mutind tl) - | C.MutCase (uri,i,outtype,term,pl) -> - C.MutCase (uri,i, - subst_inductive_type_with_dummy_mutind outtype, - subst_inductive_type_with_dummy_mutind term, - List.map subst_inductive_type_with_dummy_mutind pl) - | C.Fix (i,fl) -> - C.Fix (i,List.map (fun (name,i,ty,bo) -> (name,i, - subst_inductive_type_with_dummy_mutind ty, - subst_inductive_type_with_dummy_mutind bo)) fl) - | C.CoFix (i,fl) -> - C.CoFix (i,List.map (fun (name,ty,bo) -> (name, - subst_inductive_type_with_dummy_mutind ty, - subst_inductive_type_with_dummy_mutind bo)) fl) - | C.Const (uri,exp_named_subst) -> - let exp_named_subst' = - List.map - (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) - exp_named_subst - in - C.Const (uri,exp_named_subst') - | C.MutInd (uri,typeno,exp_named_subst) -> - let exp_named_subst' = - List.map - (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) - exp_named_subst - in - C.MutInd (uri,typeno,exp_named_subst') - | C.MutConstruct (uri,typeno,consno,exp_named_subst) -> - let exp_named_subst' = - List.map - (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) - exp_named_subst - in - C.MutConstruct (uri,typeno,consno,exp_named_subst') - | t -> t - in - match CicReduction.whd context te with (* - C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> true +let raise = function + | TypeCheckerFailure s as e -> prerr_endline (Lazy.force s); raise e + | e -> raise e +;; *) - C.Appl ((C.MutInd (uri',_,_))::tl) when UriManager.eq uri' uri -> true - | C.MutInd (uri',0,_) when UriManager.eq uri' uri -> true - | C.Prod (C.Anonymous,source,dest) -> - strictly_positive context n nn - (subst_inductive_type_with_dummy_mutind source) && - weakly_positive ((Some (C.Anonymous,(C.Decl source)))::context) - (n + 1) (nn + 1) uri dest - | C.Prod (name,source,dest) when - does_not_occur ((Some (name,(C.Decl source)))::context) 0 n dest -> - (* dummy abstraction, so we behave as in the anonimous case *) - strictly_positive context n nn - (subst_inductive_type_with_dummy_mutind source) && - weakly_positive ((Some (name,(C.Decl source)))::context) - (n + 1) (nn + 1) uri dest - | C.Prod (name,source,dest) -> - does_not_occur context n nn - (subst_inductive_type_with_dummy_mutind source)&& - weakly_positive ((Some (name,(C.Decl source)))::context) - (n + 1) (nn + 1) uri dest - | _ -> - raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) -(* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) -(* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) -and instantiate_parameters params c = - let module C = Cic in - match (c,params) with - (c,[]) -> c - | (C.Prod (_,_,ta), he::tl) -> - instantiate_parameters tl - (CicSubstitution.subst he ta) - | (C.Cast (te,_), _) -> instantiate_parameters params te - | (t,l) -> raise (AssertFailure (lazy "1")) - -and strictly_positive context n nn te = - let module C = Cic in - let module U = UriManager in - match CicReduction.whd context te with - | t when does_not_occur context n nn t -> true - | C.Rel _ -> true - | C.Cast (te,ty) -> - (*CSC: bisogna controllare ty????*) - strictly_positive context n nn te - | C.Prod (name,so,ta) -> - does_not_occur context n nn so && - strictly_positive ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) ta - | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> - List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true - | C.Appl ((C.MutInd (uri,i,exp_named_subst))::tl) -> - let (ok,paramsno,ity,cl,name) = - let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (tl,_,paramsno,_) -> - let (name,_,ity,cl) = List.nth tl i in - (List.length tl = 1, paramsno, ity, cl, name) - (* (true, paramsno, ity, cl, name) *) - | _ -> - raise - (TypeCheckerFailure - (lazy ("Unknown inductive type:" ^ U.string_of_uri uri))) - in - let (params,arguments) = split tl paramsno in - let lifted_params = List.map (CicSubstitution.lift 1) params in - let cl' = - List.map - (fun (_,te) -> - instantiate_parameters lifted_params - (CicSubstitution.subst_vars exp_named_subst te) - ) cl - in - ok && - List.fold_right - (fun x i -> i && does_not_occur context n nn x) - arguments true && - (*CSC: MEGAPATCH3 (sara' quella giusta?)*) - List.fold_right - (fun x i -> - i && - weakly_positive - ((Some (C.Name name,(Cic.Decl ity)))::context) (n+1) (nn+1) uri - x - ) cl' true - | t -> false - -(* the inductive type indexes are s.t. n < x <= nn *) -and are_all_occurrences_positive context uri indparamsno i n nn te = - let module C = Cic in - match CicReduction.whd context te with - C.Appl ((C.Rel m)::tl) when m = i -> - (*CSC: riscrivere fermandosi a 0 *) - (* let's check if the inductive type is applied at least to *) - (* indparamsno parameters *) - let last = - List.fold_left - (fun k x -> - if k = 0 then 0 - else - match CicReduction.whd context x with - C.Rel m when m = n - (indparamsno - k) -> k - 1 - | _ -> - raise (TypeCheckerFailure - (lazy - ("Non-positive occurence in mutual inductive definition(s) [1]" ^ - UriManager.string_of_uri uri))) - ) indparamsno tl - in - if last = 0 then - List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true - else - raise (TypeCheckerFailure - (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ - UriManager.string_of_uri uri))) - | C.Rel m when m = i -> - if indparamsno = 0 then - true - else - raise (TypeCheckerFailure - (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ - UriManager.string_of_uri uri))) - | C.Prod (C.Anonymous,source,dest) -> - let b = strictly_positive context n nn source in - b && - are_all_occurrences_positive - ((Some (C.Anonymous,(C.Decl source)))::context) uri indparamsno - (i+1) (n + 1) (nn + 1) dest - | C.Prod (name,source,dest) when - does_not_occur ((Some (name,(C.Decl source)))::context) 0 n dest -> - (* dummy abstraction, so we behave as in the anonimous case *) - strictly_positive context n nn source && - are_all_occurrences_positive - ((Some (name,(C.Decl source)))::context) uri indparamsno - (i+1) (n + 1) (nn + 1) dest - | C.Prod (name,source,dest) -> - does_not_occur context n nn source && - are_all_occurrences_positive ((Some (name,(C.Decl source)))::context) - uri indparamsno (i+1) (n + 1) (nn + 1) dest - | _ -> - raise - (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ - (UriManager.string_of_uri uri)))) +type recf_entry = + | Evil of int (* rno *) + | UnfFix of bool list (* fixed arguments *) + | Safe +;; -(* the boolean h means already protected *) -(* args is the list of arguments the type of the constructor that may be *) -(* found in head position must be applied to. *) -and guarded_by_constructors ~subst context n nn h te args coInductiveTypeURI = - let module C = Cic in - (*CSC: There is a lot of code replication between the cases X and *) - (*CSC: (C.Appl X tl). Maybe it will be better to define a function *) - (*CSC: that maps X into (C.Appl X []) when X is not already a C.Appl *) - match CicReduction.whd ~subst context te with - C.Rel m when m > n && m <= nn -> h - | C.Rel _ -> true - | C.Meta _ - | C.Sort _ - | C.Implicit _ - | C.Cast _ - | C.Prod _ - | C.LetIn _ -> - (* the term has just been type-checked *) - raise (AssertFailure (lazy "17")) - | C.Lambda (name,so,de) -> - does_not_occur ~subst context n nn so && - guarded_by_constructors ~subst ((Some (name,(C.Decl so)))::context) - (n + 1) (nn + 1) h de args coInductiveTypeURI - | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> - h && - List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) tl true - | C.Appl ((C.MutConstruct (uri,i,j,exp_named_subst))::tl) -> - let consty = - let obj,_ = - try - CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri - with Not_found -> assert false - in - match obj with - C.InductiveDefinition (itl,_,_,_) -> - let (_,_,_,cl) = List.nth itl i in - let (_,cons) = List.nth cl (j - 1) in - CicSubstitution.subst_vars exp_named_subst cons - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) - in - let rec analyse_branch context ty te = - match CicReduction.whd ~subst context ty with - C.Meta _ -> raise (AssertFailure (lazy "34")) - | C.Rel _ - | C.Var _ - | C.Sort _ -> - does_not_occur ~subst context n nn te - | C.Implicit _ - | C.Cast _ -> - raise (AssertFailure (lazy "24"))(* due to type-checking *) - | C.Prod (name,so,de) -> - analyse_branch ((Some (name,(C.Decl so)))::context) de te - | C.Lambda _ - | C.LetIn _ -> - raise (AssertFailure (lazy "25"))(* due to type-checking *) - | C.Appl ((C.MutInd (uri,_,_))::_) when uri == coInductiveTypeURI -> - guarded_by_constructors ~subst context n nn true te [] - coInductiveTypeURI - | C.Appl ((C.MutInd (uri,_,_))::_) -> - guarded_by_constructors ~subst context n nn true te tl - coInductiveTypeURI - | C.Appl _ -> - does_not_occur ~subst context n nn te - | C.Const _ -> raise (AssertFailure (lazy "26")) - | C.MutInd (uri,_,_) when uri == coInductiveTypeURI -> - guarded_by_constructors ~subst context n nn true te [] - coInductiveTypeURI - | C.MutInd _ -> - does_not_occur ~subst context n nn te - | C.MutConstruct _ -> raise (AssertFailure (lazy "27")) - (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) - (*CSC: in head position. *) - | C.MutCase _ - | C.Fix _ - | C.CoFix _ -> - raise (AssertFailure (lazy "28"))(* due to type-checking *) - in - let rec analyse_instantiated_type context ty l = - match CicReduction.whd ~subst context ty with - C.Rel _ - | C.Var _ - | C.Meta _ - | C.Sort _ - | C.Implicit _ - | C.Cast _ -> raise (AssertFailure (lazy "29"))(* due to type-checking *) - | C.Prod (name,so,de) -> - begin - match l with - [] -> true - | he::tl -> - analyse_branch context so he && - analyse_instantiated_type - ((Some (name,(C.Decl so)))::context) de tl - end - | C.Lambda _ - | C.LetIn _ -> - raise (AssertFailure (lazy "30"))(* due to type-checking *) - | C.Appl _ -> - List.fold_left - (fun i x -> i && does_not_occur ~subst context n nn x) true l - | C.Const _ -> raise (AssertFailure (lazy "31")) - | C.MutInd _ -> - List.fold_left - (fun i x -> i && does_not_occur ~subst context n nn x) true l - | C.MutConstruct _ -> raise (AssertFailure (lazy "32")) - (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) - (*CSC: in head position. *) - | C.MutCase _ - | C.Fix _ - | C.CoFix _ -> - raise (AssertFailure (lazy "33"))(* due to type-checking *) - in - let rec instantiate_type args consty = - function - [] -> true - | tlhe::tltl as l -> - let consty' = CicReduction.whd ~subst context consty in - match args with - he::tl -> - begin - match consty' with - C.Prod (_,_,de) -> - let instantiated_de = CicSubstitution.subst he de in - (*CSC: siamo sicuri che non sia troppo forte? *) - does_not_occur ~subst context n nn tlhe & - instantiate_type tl instantiated_de tltl - | _ -> - (*CSC:We do not consider backbones with a MutCase, a *) - (*CSC:FixPoint, a CoFixPoint and so on in head position.*) - raise (AssertFailure (lazy "23")) - end - | [] -> analyse_instantiated_type context consty' l - (* These are all the other cases *) - in - instantiate_type args consty tl - | C.Appl ((C.CoFix (_,fl))::tl) -> - List.fold_left (fun i x -> i && does_not_occur ~subst context n nn x) true tl && - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) - and tys,_ = - List.fold_left - (fun (types,len) (n,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - in - List.fold_right - (fun (_,ty,bo) i -> - i && does_not_occur ~subst context n nn ty && - guarded_by_constructors ~subst (tys@context) n_plus_len nn_plus_len - h bo args coInductiveTypeURI - ) fl true - | C.Appl ((C.MutCase (_,_,out,te,pl))::tl) -> - List.fold_left (fun i x -> i && does_not_occur ~subst context n nn x) true tl && - does_not_occur ~subst context n nn out && - does_not_occur ~subst context n nn te && - List.fold_right - (fun x i -> - i && - guarded_by_constructors ~subst context n nn h x args - coInductiveTypeURI - ) pl true - | C.Appl l -> - List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) l true - | C.Var (_,exp_named_subst) - | C.Const (_,exp_named_subst) -> - List.fold_right - (fun (_,x) i -> i && does_not_occur ~subst context n nn x) exp_named_subst true - | C.MutInd _ -> assert false - | C.MutConstruct (_,_,_,exp_named_subst) -> - List.fold_right - (fun (_,x) i -> i && does_not_occur ~subst context n nn x) exp_named_subst true - | C.MutCase (_,_,out,te,pl) -> - does_not_occur ~subst context n nn out && - does_not_occur ~subst context n nn te && - List.fold_right - (fun x i -> - i && - guarded_by_constructors ~subst context n nn h x args - coInductiveTypeURI - ) pl true - | C.Fix (_,fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) - and tys,_ = - List.fold_left - (fun (types,len) (n,_,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - in - List.fold_right - (fun (_,_,ty,bo) i -> - i && does_not_occur ~subst context n nn ty && - does_not_occur ~subst (tys@context) n_plus_len nn_plus_len bo - ) fl true - | C.CoFix (_,fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) - and tys,_ = - List.fold_left - (fun (types,len) (n,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - in - List.fold_right - (fun (_,ty,bo) i -> - i && does_not_occur ~subst context n nn ty && - guarded_by_constructors ~subst (tys@context) n_plus_len nn_plus_len - h bo - args coInductiveTypeURI - ) fl true +let is_dangerous i l = + List.exists (function (j,Evil _) when j=i -> true | _ -> false) l +;; - in - type_of_aux ~logger context t ugraph +let is_unfolded i l = + List.exists (function (j,UnfFix _) when j=i -> true | _ -> false) l +;; +let is_safe i l = + List.exists (function (j,Safe) when j=i -> true | _ -> false) l ;; -(** wrappers which instantiate fresh loggers *) +let get_recno i l = + try match List.assoc i l with Evil rno -> rno | _ -> assert false + with Not_found -> assert false +;; -(* check_allowed_sort_elimination uri i s1 s2 - This function is used outside the kernel to determine in advance whether - a MutCase will be allowed or not. - [uri,i] is the type of the term to match - [s1] is the sort of the term to eliminate (i.e. the head of the arity - of the inductive type [uri,i]) - [s2] is the sort of the goal (i.e. the head of the type of the outtype - of the MutCase) *) -let check_allowed_sort_elimination uri i s1 s2 = - fst (check_allowed_sort_elimination ~subst:[] ~metasenv:[] - ~logger:(new CicLogger.logger) [] uri i true - (Cic.Implicit None) (* never used *) (Cic.Sort s1) (Cic.Sort s2) - CicUniv.empty_ugraph) +let get_fixed_args i l = + try match List.assoc i l with UnfFix fa -> fa | _ -> assert false + with Not_found -> assert false ;; -Deannotate.type_of_aux' := fun context t -> fst (type_of_aux' [] context t CicUniv.oblivion_ugraph);; +let shift_k e (c,rf,x) = e::c,List.map (fun (k,v) -> k+1,v) rf,x+1;; +(* for debugging only +let string_of_recfuns ~subst ~metasenv ~context l = + let pp = PP.ppterm ~subst ~metasenv ~context in + let safe, rest = List.partition (function (_,Safe) -> true | _ -> false) l in + let dang,unf = List.partition (function (_,UnfFix _)-> false | _->true)rest in + "\n\tsafes: "^String.concat "," (List.map (fun (i,_)->pp (C.Rel i)) safe) ^ + "\n\tfix : "^String.concat "," + (List.map + (function (i,UnfFix l)-> pp(C.Rel i)^"/"^String.concat "," (List.map + string_of_bool l) + | _ ->assert false) unf) ^ + "\n\trec : "^String.concat "," + (List.map + (function (i,Evil rno)->pp(C.Rel i)^"/"^string_of_int rno + | _ -> assert false) dang) +;; *) -module C = NCic -module R = NCicReduction -module Ref = NReference -module S = NCicSubstitution -module U = NCicUtils -module E = NCicEnvironment - -let rec split_prods ~subst context n te = - match (n, R.whd ~subst context te) with - | (0, _) -> context,te - | (n, C.Prod (name,so,ta)) when n > 0 -> - split_prods ~subst ((name,(C.Decl so))::context) (n - 1) ta - | (_, _) -> raise (AssertFailure (lazy "split_prods")) +let fixed_args bos j n nn = + let rec aux k acc = function + | C.Appl (C.Rel i::args) when i-k > n && i-k <= nn -> + let rec combine l1 l2 = + match l1,l2 with + [],[] -> [] + | he1::tl1, he2::tl2 -> (he1,he2)::combine tl1 tl2 + | _::tl, [] -> (false,C.Rel ~-1)::combine tl [] (* dummy term *) + | [],_::_ -> assert false + in + let lefts, _ = HExtlib.split_nth "NTC 1" (min j (List.length args)) args in + List.map (fun ((b,x),i) -> b && x = C.Rel (k-i)) + (HExtlib.list_mapi (fun x i -> x,i) (combine acc lefts)) + | t -> U.fold (fun _ k -> k+1) k aux acc t + in + List.fold_left (aux 0) + (let rec f = function 0 -> [] | n -> true :: f (n-1) in f j) bos ;; -let debruijn ?(cb=fun _ _ -> ()) uri number_of_types = +let debruijn uri number_of_types context = let rec aux k t = - let res = - match t with - | C.Meta (i,(s,C.Ctx l)) -> - let l1 = NCicUtils.sharing_map (aux (k-s)) l in - if l1 == l then t else C.Meta (i,(s,C.Ctx l1)) - | C.Meta _ -> t - | C.Const (Ref.Ref (_,uri1,(Ref.Fix (no,_) | Ref.CoFix no))) - | C.Const (Ref.Ref (_,uri1,Ref.Ind no)) when NUri.eq uri uri1 -> - C.Rel (k + number_of_types - no) - | t -> NCicUtils.map (fun _ k -> k+1) k aux t - in - cb t res; res + match t with + | C.Meta (i,(s,C.Ctx l)) -> + let l1 = HExtlib.sharing_map (aux (k-s)) l in + if l1 == l then t else C.Meta (i,(s,C.Ctx l1)) + | C.Meta _ -> t + | C.Const (Ref.Ref (uri1,(Ref.Fix (no,_,_) | Ref.CoFix no))) + | C.Const (Ref.Ref (uri1,Ref.Ind (_,no,_))) when NUri.eq uri uri1 -> + C.Rel (k + number_of_types - no) + | t -> U.map (fun _ k -> k+1) k aux t in - aux 0 + aux (List.length context) ;; -let sort_of_prod ~metasenv ~subst context (name,s) (t1, t2) = +let sort_of_prod ~metasenv ~subst context (name,s) t (t1, t2) = let t1 = R.whd ~subst context t1 in let t2 = R.whd ~subst ((name,C.Decl s)::context) t2 in match t1, t2 with - | C.Sort s1, C.Sort C.Prop -> t2 - | C.Sort (C.Type u1), C.Sort (C.Type u2) -> C.Sort (C.Type (max u1 u2)) - | C.Sort _,C.Sort (C.Type _) -> t2 - | C.Sort (C.Type _) , C.Sort C.CProp -> t1 - | C.Sort _, C.Sort C.CProp -> t2 - | C.Meta _, C.Sort _ - | C.Meta _, C.Meta _ - | C.Sort _, C.Meta _ when U.is_closed t2 -> t2 - | _ -> + | C.Sort _, C.Sort C.Prop -> t2 + | C.Sort (C.Type u1), C.Sort (C.Type u2) -> + C.Sort (C.Type (NCicEnvironment.max u1 u2)) + | C.Sort C.Prop,C.Sort (C.Type _) -> t2 + | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))), C.Sort _ -> t2 + | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))), C.Meta (i,(_,(C.Irl 0 | C.Ctx []))) + | C.Sort _, C.Meta (i,(_,(C.Irl 0 | C.Ctx []))) -> + NCic.Meta (i,(0, C.Irl 0)) + | x, (C.Sort _ | C.Meta (_,(_,(C.Irl 0 | C.Ctx [])))) + | _, x -> + let y, context = + if x == t1 then s, context else t, ((name,C.Decl s)::context) + in raise (TypeCheckerFailure (lazy (Printf.sprintf - "Prod: expected two sorts, found = %s, %s" - (NCicPp.ppterm ~subst ~metasenv ~context t1) - (NCicPp.ppterm ~subst ~metasenv ~context t2)))) + "%s is expected to be a type, but its type is %s that is not a sort" + (PP.ppterm ~subst ~metasenv ~context y) + (PP.ppterm ~subst ~metasenv ~context x)))) ;; -let eat_prods ~subst ~metasenv context he ty_he args_with_ty = - let rec aux ty_he = function - | [] -> ty_he - | (arg, ty_arg)::tl -> - match R.whd ~subst context ty_he with - | C.Prod (n,s,t) -> -(* - prerr_endline (NCicPp.ppterm ~subst ~metasenv ~context s ^ " - Vs - " - ^ NCicPp.ppterm ~subst ~metasenv - ~context ty_arg); - prerr_endline (NCicPp.ppterm ~subst ~metasenv ~context (S.subst ~avoid_beta_redexes:true arg t)); -*) - if R.are_convertible ~subst ~metasenv context ty_arg s then - aux (S.subst ~avoid_beta_redexes:true arg t) tl - else - raise - (TypeCheckerFailure - (lazy (Printf.sprintf - ("Appl: wrong parameter-type, expected\n%s\nfound\n%s") - (NCicPp.ppterm ~subst ~metasenv ~context s) - (NCicPp.ppterm ~subst ~metasenv ~context ty_arg)))) - | _ -> - raise - (TypeCheckerFailure - (lazy (Printf.sprintf - "Appl: %s is not a function, it cannot be applied" - (NCicPp.ppterm ~subst ~metasenv ~context - (let res = List.length tl in - let eaten = List.length args_with_ty - res in - (NCic.Appl - (he::List.map fst - (fst (HExtlib.split_nth eaten args_with_ty))))))))) - in - aux ty_he args_with_ty +(* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) +(* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) +let rec instantiate_parameters params c = + match c, params with + | c,[] -> c + | C.Prod (_,_,ta), he::tl -> instantiate_parameters tl (S.subst he ta) + | _,_ -> raise (AssertFailure (lazy "1")) ;; -let fix_lefts_in_constrs ~subst uri paramsno tyl i = - let len = List.length tyl in - let _,_,arity,cl = List.nth tyl i in - let tys = List.map (fun (_,n,ty,_) -> n,C.Decl ty) tyl in - let cl' = - List.map - (fun (_,id,ty) -> - let debruijnedty = debruijn uri len ty in - id, snd (split_prods ~subst tys paramsno ty), - snd (split_prods ~subst tys paramsno debruijnedty)) - cl +let specialize_inductive_type_constrs ~subst context ty_term = + match R.whd ~subst context ty_term with + | C.Const (Ref.Ref (_,Ref.Ind _) as ref) + | C.Appl (C.Const (Ref.Ref (_,Ref.Ind _) as ref) :: _ ) as ty -> + let args = match ty with C.Appl (_::tl) -> tl | _ -> [] in + let _, leftno, itl, _, i = E.get_checked_indtys ref in + let left_args,_ = HExtlib.split_nth "NTC 2" leftno args in + let _,_,_,cl = List.nth itl i in + List.map + (fun (rel,name,ty) -> rel, name, instantiate_parameters left_args ty) cl + | _ -> assert false +;; + +let specialize_and_abstract_constrs ~subst r_uri r_len context ty_term = + let cl = specialize_inductive_type_constrs ~subst context ty_term in + let len = List.length context in + let context_dcl = + match E.get_checked_obj r_uri with + | _,_,_,_, C.Inductive (_,_,tys,_) -> + context @ List.map (fun (_,name,arity,_) -> name,C.Decl arity) tys + | _ -> assert false in - let lefts = fst (split_prods ~subst [] paramsno arity) in - lefts@tys, len, cl' + context_dcl, + List.map (fun (_,id,ty) -> id, debruijn r_uri r_len context ty) cl, + len, len + r_len ;; exception DoesOccur;; let does_not_occur ~subst context n nn t = - let rec aux (context,n,nn as k) _ = function - | C.Rel m when m > n && m <= nn -> raise DoesOccur + let rec aux k _ = function + | C.Rel m when m > n+k && m <= nn+k -> raise DoesOccur + | C.Rel m when m <= k || m > nn+k -> () | C.Rel m -> - (try (match List.nth context (m-1) with - | _,C.Def (bo,_) -> aux k () (S.lift m bo) - | _ -> ()) + (try match List.nth context (m-1-k) with + | _,C.Def (bo,_) -> aux (n-m) () bo + | _ -> () with Failure _ -> assert false) | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))) -> (* closed meta *) () | C.Meta (mno,(s,l)) -> (try - let _,_,term,_ = U.lookup_subst mno subst in - aux (context,n+s,nn+s) () (S.subst_meta (0,l) term) - with CicUtil.Subst_not_found _ -> match l with - | C.Irl len -> if not (n >= s+len || s > nn) then raise DoesOccur - | C.Ctx lc -> List.iter (aux (context,n+s,nn+s) ()) lc) - | t -> U.fold (fun e (ctx,n,nn) -> (e::ctx,n+1,nn+1)) k aux () t + (* possible optimization here: try does_not_occur on l and + perform substitution only if DoesOccur is raised *) + let _,_,term,_ = U.lookup_subst mno subst in + aux (k-s) () (S.subst_meta (0,l) term) + with U.Subst_not_found _ -> match l with + | C.Irl len -> if not (n+k >= s+len || s > nn+k) then raise DoesOccur + | C.Ctx lc -> List.iter (aux (k-s) ()) lc) + | t -> U.fold (fun _ k -> k + 1) k aux () t in - try aux (context,n,nn) () t; true + try aux 0 () t; true with DoesOccur -> false ;; +let rec eat_lambdas ~subst ~metasenv context n te = + match (n, R.whd ~subst context te) with + | (0, _) -> (te, context) + | (n, C.Lambda (name,so,ta)) when n > 0 -> + eat_lambdas ~subst ~metasenv ((name,(C.Decl so))::context) (n - 1) ta + | (n, te) -> + raise (AssertFailure (lazy (Printf.sprintf "eat_lambdas (%d, %s)" n + (PP.ppterm ~subst ~metasenv ~context te)))) +;; + +let rec eat_or_subst_lambdas + ~subst ~metasenv n te to_be_subst args (context,_,_ as k) += + match n, R.whd ~subst context te, to_be_subst, args with + | (n, C.Lambda (_,_,ta),true::to_be_subst,arg::args) when n > 0 -> + eat_or_subst_lambdas ~subst ~metasenv (n - 1) (S.subst arg ta) + to_be_subst args k + | (n, C.Lambda (name,so,ta),false::to_be_subst,_::args) when n > 0 -> + eat_or_subst_lambdas ~subst ~metasenv (n - 1) ta to_be_subst args + (shift_k (name,(C.Decl so)) k) + | (_, te, _, _) -> te, k +;; + +let check_homogeneous_call ~subst context indparamsno n uri reduct tl = + let last = + List.fold_left + (fun k x -> + if k = 0 then 0 + else + match R.whd ~subst context x with + | C.Rel m when m = n - (indparamsno - k) -> k - 1 + | _ -> raise (TypeCheckerFailure (lazy + ("Argument "^string_of_int (indparamsno - k + 1) ^ " (of " ^ + string_of_int indparamsno ^ " fixed) is not homogeneous in "^ + "appl:\n"^ PP.ppterm ~context ~subst ~metasenv:[] reduct)))) + indparamsno tl + in + if last <> 0 then + raise (TypeCheckerFailure + (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ + NUri.string_of_uri uri))) +;; + +(* Inductive types being checked for positivity have *) +(* indexes x s.t. n < x <= nn. *) +let rec weakly_positive ~subst context n nn uri indparamsno posuri te = + (*CSC: Not very nice. *) + let dummy = C.Sort C.Prop in + (*CSC: to be moved in cicSubstitution? *) + let rec subst_inductive_type_with_dummy _ = function + | C.Const (Ref.Ref (uri',Ref.Ind (true,0,_))) when NUri.eq uri' uri -> dummy + | C.Appl ((C.Const (Ref.Ref (uri',Ref.Ind (true,0,lno))))::tl) + when NUri.eq uri' uri -> + let _, rargs = HExtlib.split_nth "NTC 3" lno tl in + if rargs = [] then dummy else C.Appl (dummy :: rargs) + | t -> U.map (fun _ x->x) () subst_inductive_type_with_dummy t + in + (* this function has the same semantics of are_all_occurrences_positive + but the i-th context entry role is played by dummy and some checks + are skipped because we already know that are_all_occurrences_positive + of uri in te. *) + let rec aux context n nn te = + match R.whd ~subst context te with + | t when t = dummy -> true + | C.Appl (te::rargs) when te = dummy -> + List.for_all (does_not_occur ~subst context n nn) rargs + | C.Prod (name,source,dest) when + does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> + (* dummy abstraction, so we behave as in the anonimous case *) + strictly_positive ~subst context n nn indparamsno posuri source && + aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest + | C.Prod (name,source,dest) -> + does_not_occur ~subst context n nn source && + aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest + | _ -> + raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) + in + aux context n nn (subst_inductive_type_with_dummy () te) + +and strictly_positive ~subst context n nn indparamsno posuri te = + match R.whd ~subst context te with + | t when does_not_occur ~subst context n nn t -> true + | C.Rel _ when indparamsno = 0 -> true + | C.Appl ((C.Rel m)::tl) as reduct when m > n && m <= nn -> + check_homogeneous_call ~subst context indparamsno n posuri reduct tl; + List.for_all (does_not_occur ~subst context n nn) tl + | C.Prod (name,so,ta) -> + does_not_occur ~subst context n nn so && + strictly_positive ~subst ((name,C.Decl so)::context) (n+1) (nn+1) + indparamsno posuri ta + | C.Appl (C.Const (Ref.Ref (uri,Ref.Ind _) as r)::tl) -> + let _,paramsno,tyl,_,i = E.get_checked_indtys r in + let _,name,ity,cl = List.nth tyl i in + let ok = List.length tyl = 1 in + let params, arguments = HExtlib.split_nth "NTC 4" paramsno tl in + let lifted_params = List.map (S.lift 1) params in + let cl = + List.map (fun (_,_,te) -> instantiate_parameters lifted_params te) cl + in + ok && + List.for_all (does_not_occur ~subst context n nn) arguments && + List.for_all + (weakly_positive ~subst ((name,C.Decl ity)::context) (n+1) (nn+1) + uri indparamsno posuri) cl + | _ -> false + +(* the inductive type indexes are s.t. n < x <= nn *) +and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = + match R.whd ~subst context te with + | C.Appl ((C.Rel m)::tl) as reduct when m = i -> + check_homogeneous_call ~subst context indparamsno n uri reduct tl; + List.for_all (does_not_occur ~subst context n nn) tl + | C.Rel m when m = i -> + if indparamsno = 0 then + true + else + raise (TypeCheckerFailure + (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ + NUri.string_of_uri uri))) + | C.Prod (name,source,dest) when + does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> + strictly_positive ~subst context n nn indparamsno uri source && + are_all_occurrences_positive ~subst + ((name,C.Decl source)::context) uri indparamsno + (i+1) (n + 1) (nn + 1) dest + | C.Prod (name,source,dest) -> + if not (does_not_occur ~subst context n nn source) then + raise (TypeCheckerFailure (lazy ("Non-positive occurrence in "^ + PP.ppterm ~context ~metasenv:[] ~subst te))); + are_all_occurrences_positive ~subst ((name,C.Decl source)::context) + uri indparamsno (i+1) (n + 1) (nn + 1) dest + | _ -> + raise + (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ + (NUri.string_of_uri uri)))) +;; + exception NotGuarded of string Lazy.t;; +let type_of_branch ~subst context leftno outty cons tycons = + let rec aux liftno context cons tycons = + match R.whd ~subst context tycons with + | C.Const (Ref.Ref (_,Ref.Ind _)) -> C.Appl [S.lift liftno outty ; cons] + | C.Appl (C.Const (Ref.Ref (_,Ref.Ind _))::tl) -> + let _,arguments = HExtlib.split_nth "NTC 5" leftno tl in + C.Appl (S.lift liftno outty::arguments@[cons]) + | C.Prod (name,so,de) -> + let cons = + match S.lift 1 cons with + | C.Appl l -> C.Appl (l@[C.Rel 1]) + | t -> C.Appl [t ; C.Rel 1] + in + C.Prod (name,so, aux (liftno+1) ((name,(C.Decl so))::context) cons de) + | t -> raise (AssertFailure + (lazy ("type_of_branch, the contructor has type: " ^ NCicPp.ppterm + ~metasenv:[] ~context:[] ~subst:[] t))) + in + aux 0 context cons tycons +;; + + let rec typeof ~subst ~metasenv context term = let rec typeof_aux context = - fun t -> (*prerr_endline (NCicPp.ppterm ~context t); *) + fun t -> (*prerr_endline (PP.ppterm ~metasenv ~subst ~context t);*) match t with | C.Rel n -> (try match List.nth context (n - 1) with | (_,C.Decl ty) -> S.lift n ty | (_,C.Def (_,ty)) -> S.lift n ty - with Failure _ -> raise (TypeCheckerFailure (lazy "unbound variable"))) - | C.Sort (C.Type i) -> C.Sort (C.Type (i+1)) - | C.Sort s -> C.Sort (C.Type 0) + with Failure _ -> + raise (TypeCheckerFailure (lazy ("unbound variable " ^ string_of_int n + ^" under: " ^ NCicPp.ppcontext ~metasenv ~subst context)))) + | C.Sort (C.Type [false,u]) -> C.Sort (C.Type [true, u]) + | C.Sort (C.Type _) -> + raise (AssertFailure (lazy ("Cannot type an inferred type: "^ + NCicPp.ppterm ~subst ~metasenv ~context t))) + | C.Sort _ -> C.Sort (C.Type NCicEnvironment.type0) | C.Implicit _ -> raise (AssertFailure (lazy "Implicit found")) | C.Meta (n,l) as t -> let canonical_ctx,ty = try let _,c,_,ty = U.lookup_subst n subst in c,ty with U.Subst_not_found _ -> try - let _,_,c,ty = U.lookup_meta n metasenv in c,ty + let _,c,ty = U.lookup_meta n metasenv in c, ty +(* match ty with C.Implicit _ -> assert false | _ -> c,ty *) with U.Meta_not_found _ -> raise (AssertFailure (lazy (Printf.sprintf - "%s not found" (NCicPp.ppterm ~subst ~metasenv ~context t)))) + "%s not found in:\n%s" (PP.ppterm ~subst ~metasenv ~context t) + (PP.ppmetasenv ~subst metasenv) + ))) in check_metasenv_consistency t ~subst ~metasenv context canonical_ctx l; S.subst_meta l ty @@ -646,7 +395,7 @@ let rec typeof ~subst ~metasenv context term = | C.Prod (name,s,t) -> let sort1 = typeof_aux context s in let sort2 = typeof_aux ((name,(C.Decl s))::context) t in - sort_of_prod ~metasenv ~subst context (name,s) (sort1,sort2) + sort_of_prod ~metasenv ~subst context (name,s) t (sort1,sort2) | C.Lambda (n,s,t) -> let sort = typeof_aux context s in (match R.whd ~subst context sort with @@ -656,64 +405,60 @@ let rec typeof ~subst ~metasenv context term = (TypeCheckerFailure (lazy (Printf.sprintf ("Not well-typed lambda-abstraction: " ^^ "the source %s should be a type; instead it is a term " ^^ - "of type %s") (NCicPp.ppterm ~subst ~metasenv ~context s) - (NCicPp.ppterm ~subst ~metasenv ~context sort))))); + "of type %s") (PP.ppterm ~subst ~metasenv ~context s) + (PP.ppterm ~subst ~metasenv ~context sort))))); let ty = typeof_aux ((n,(C.Decl s))::context) t in C.Prod (n,s,ty) | C.LetIn (n,ty,t,bo) -> let ty_t = typeof_aux context t in let _ = typeof_aux context ty in - if not (R.are_convertible ~subst ~metasenv context ty ty_t) then + if not (R.are_convertible ~metasenv ~subst context ty_t ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf "The type of %s is %s but it is expected to be %s" - (NCicPp.ppterm ~subst ~metasenv ~context t) - (NCicPp.ppterm ~subst ~metasenv ~context ty_t) - (NCicPp.ppterm ~subst ~metasenv ~context ty)))) + (PP.ppterm ~subst ~metasenv ~context t) + (PP.ppterm ~subst ~metasenv ~context ty_t) + (PP.ppterm ~subst ~metasenv ~context ty)))) else let ty_bo = typeof_aux ((n,C.Def (t,ty))::context) bo in S.subst ~avoid_beta_redexes:true t ty_bo | C.Appl (he::(_::_ as args)) -> let ty_he = typeof_aux context he in let args_with_ty = List.map (fun t -> t, typeof_aux context t) args in -(* - prerr_endline ("HEAD: " ^ NCicPp.ppterm ~context ty_he); - prerr_endline ("TARGS: " ^ String.concat " | " (List.map (NCicPp.ppterm - ~context) (List.map snd args_with_ty))); - prerr_endline ("ARGS: " ^ String.concat " | " (List.map (NCicPp.ppterm - ~context) (List.map fst args_with_ty))); -*) eat_prods ~subst ~metasenv context he ty_he args_with_ty | C.Appl _ -> raise (AssertFailure (lazy "Appl of length < 2")) - | C.Match (Ref.Ref (_,_,Ref.Ind tyno) as r,outtype,term,pl) -> + | C.Match (Ref.Ref (_,Ref.Ind (_,tyno,_)) as r,outtype,term,pl) -> let outsort = typeof_aux context outtype in - let leftno = E.get_indty_leftno r in + let _,leftno,itl,_,_ = E.get_checked_indtys r in + let constructorsno = + let _,_,_,cl = List.nth itl tyno in List.length cl + in let parameters, arguments = let ty = R.whd ~subst context (typeof_aux context term) in let r',tl = match ty with - C.Const (Ref.Ref (_,_,Ref.Ind _) as r') -> r',[] - | C.Appl (C.Const (Ref.Ref (_,_,Ref.Ind _) as r') :: tl) -> r',tl + C.Const (Ref.Ref (_,Ref.Ind _) as r') -> r',[] + | C.Appl (C.Const (Ref.Ref (_,Ref.Ind _) as r') :: tl) -> r',tl | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Case analysis: analysed term %s is not an inductive one" - (NCicPp.ppterm ~subst ~metasenv ~context term)))) in + (PP.ppterm ~subst ~metasenv ~context term)))) in if not (Ref.eq r r') then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Case analysys: analysed term type is %s, but is expected " ^^ "to be (an application of) %s") - (NCicPp.ppterm ~subst ~metasenv ~context ty) - (NCicPp.ppterm ~subst ~metasenv ~context (C.Const r'))))) + (PP.ppterm ~subst ~metasenv ~context ty) + (PP.ppterm ~subst ~metasenv ~context (C.Const r'))))) else - try HExtlib.split_nth leftno tl + try HExtlib.split_nth "NTC 6" leftno tl with Failure _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "%s is partially applied" - (NCicPp.ppterm ~subst ~metasenv ~context ty)))) in + (PP.ppterm ~subst ~metasenv ~context ty)))) in (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) let sort_of_ind_type = if parameters = [] then C.Const r @@ -722,12 +467,6 @@ let rec typeof ~subst ~metasenv context term = check_allowed_sort_elimination ~subst ~metasenv r context sort_of_ind_type type_of_sort_of_ind_ty outsort; (* let's check if the type of branches are right *) - let leftno,constructorsno = - let inductive,leftno,itl,_,i = E.get_checked_indtys r in - let _,name,ty,cl = List.nth itl i in - let cl_len = List.length cl in - leftno, cl_len - in if List.length pl <> constructorsno then raise (TypeCheckerFailure (lazy ("Wrong number of cases in a match"))); let j,branches_ok,p_ty, exp_p_ty = @@ -742,9 +481,9 @@ let rec typeof ~subst ~metasenv context term = let ty_p = typeof_aux context p in let ty_cons = typeof_aux context cons in let ty_branch = - type_of_branch ~subst context leftno outtype cons ty_cons 0 + type_of_branch ~subst context leftno outtype cons ty_cons in - j+1, R.are_convertible ~subst ~metasenv context ty_p ty_branch, + j+1, R.are_convertible ~metasenv ~subst context ty_p ty_branch, ty_p, ty_branch else j,false,old_p_ty,old_exp_p_ty @@ -755,32 +494,15 @@ let rec typeof ~subst ~metasenv context term = (TypeCheckerFailure (lazy (Printf.sprintf ("Branch for constructor %s :=\n%s\n"^^ "has type %s\nnot convertible with %s") - (NCicPp.ppterm ~subst ~metasenv ~context + (PP.ppterm ~subst ~metasenv ~context (C.Const (Ref.mk_constructor (j-1) r))) - (NCicPp.ppterm ~metasenv ~subst ~context (List.nth pl (j-2))) - (NCicPp.ppterm ~metasenv ~subst ~context p_ty) - (NCicPp.ppterm ~metasenv ~subst ~context exp_p_ty)))); + (PP.ppterm ~metasenv ~subst ~context (List.nth pl (j-2))) + (PP.ppterm ~metasenv ~subst ~context p_ty) + (PP.ppterm ~metasenv ~subst ~context exp_p_ty)))); let res = outtype::arguments@[term] in R.head_beta_reduce (C.Appl res) | C.Match _ -> assert false - and type_of_branch ~subst context leftno outty cons tycons liftno = - match R.whd ~subst context tycons with - | C.Const (Ref.Ref (_,_,Ref.Ind _)) -> C.Appl [S.lift liftno outty ; cons] - | C.Appl (C.Const (Ref.Ref (_,_,Ref.Ind _))::tl) -> - let _,arguments = HExtlib.split_nth leftno tl in - C.Appl (S.lift liftno outty::arguments@[cons]) - | C.Prod (name,so,de) -> - let cons = - match S.lift 1 cons with - | C.Appl l -> C.Appl (l@[C.Rel 1]) - | t -> C.Appl [t ; C.Rel 1] - in - C.Prod (name,so, - type_of_branch ~subst ((name,(C.Decl so))::context) - leftno outty cons de (liftno+1)) - | _ -> raise (AssertFailure (lazy "type_of_branch")) - (* check_metasenv_consistency checks that the "canonical" context of a metavariable is consitent - up to relocation via the relocation list l - with the actual context *) @@ -788,45 +510,45 @@ let rec typeof ~subst ~metasenv context term = ~subst ~metasenv term context canonical_context l = match l with - | shift, NCic.Irl n -> - let context = snd (HExtlib.split_nth shift context) in + | shift, C.Irl n -> + let context = snd (HExtlib.split_nth "NTC 7" shift context) in let rec compare = function | 0,_,[] -> () | 0,_,_::_ | _,_,[] -> raise (AssertFailure (lazy (Printf.sprintf - "Local and canonical context %s have different lengths" - (NCicPp.ppterm ~subst ~context ~metasenv term)))) + "(2) Local and canonical context %s have different lengths" + (PP.ppterm ~subst ~context ~metasenv term)))) | m,[],_::_ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Unbound variable -%d in %s" m - (NCicPp.ppterm ~subst ~metasenv ~context term)))) + (PP.ppterm ~subst ~metasenv ~context term)))) | m,t::tl,ct::ctl -> (match t,ct with (_,C.Decl t1), (_,C.Decl t2) | (_,C.Def (t1,_)), (_,C.Def (t2,_)) | (_,C.Def (_,t1)), (_,C.Decl t2) -> - if not (R.are_convertible ~subst ~metasenv tl t1 t2) then + if not (R.are_convertible ~metasenv ~subst tl t1 t2) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "%s expected, which is not convertible with %s") - (NCicPp.ppterm ~subst ~metasenv ~context term) - (NCicPp.ppterm ~subst ~metasenv ~context t2) - (NCicPp.ppterm ~subst ~metasenv ~context t1)))) + (PP.ppterm ~subst ~metasenv ~context term) + (PP.ppterm ~subst ~metasenv ~context t2) + (PP.ppterm ~subst ~metasenv ~context t1)))) | _,_ -> raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "a definition expected, but a declaration found") - (NCicPp.ppterm ~subst ~metasenv ~context term))))); + (PP.ppterm ~subst ~metasenv ~context term))))); compare (m - 1,tl,ctl) in compare (n,context,canonical_context) | shift, lc_kind -> (* we avoid useless lifting by shortening the context*) - let l,context = (0,lc_kind), snd (HExtlib.split_nth shift context) in + let l,context = (0,lc_kind), snd (HExtlib.split_nth "NTC 8" shift context) in let lifted_canonical_context = let rec lift_metas i = function | [] -> [] @@ -857,387 +579,754 @@ let rec typeof ~subst ~metasenv context term = with Failure _ -> t) | _ -> t in - if not (R.are_convertible ~subst ~metasenv context optimized_t ct) + if not (R.are_convertible ~metasenv ~subst context optimized_t ct) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context: " ^^ "expected a term convertible with %s, found %s") - (NCicPp.ppterm ~subst ~metasenv ~context ct) - (NCicPp.ppterm ~subst ~metasenv ~context t)))) + (PP.ppterm ~subst ~metasenv ~context ct) + (PP.ppterm ~subst ~metasenv ~context t)))) | t, (_,C.Decl ct) -> let type_t = typeof_aux context t in - if not (R.are_convertible ~subst ~metasenv context type_t ct) then + if not (R.are_convertible ~metasenv ~subst context type_t ct) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context: "^^ "expected a term of type %s, found %s of type %s") - (NCicPp.ppterm ~subst ~metasenv ~context ct) - (NCicPp.ppterm ~subst ~metasenv ~context t) - (NCicPp.ppterm ~subst ~metasenv ~context type_t)))) + (PP.ppterm ~subst ~metasenv ~context ct) + (PP.ppterm ~subst ~metasenv ~context t) + (PP.ppterm ~subst ~metasenv ~context type_t)))) ) l lifted_canonical_context with - Invalid_argument _ -> + | Invalid_argument "List.iter2" -> raise (AssertFailure (lazy (Printf.sprintf - "Local and canonical context %s have different lengths" - (NCicPp.ppterm ~subst ~metasenv ~context term)))) - - and is_non_informative context paramsno c = - let rec aux context c = - match R.whd context c with - | C.Prod (n,so,de) -> - let s = typeof_aux context so in - s = C.Sort C.Prop && aux ((n,(C.Decl so))::context) de - | _ -> true in - let context',dx = split_prods ~subst:[] context paramsno c in - aux context' dx - - and check_allowed_sort_elimination ~subst ~metasenv r = - let mkapp he arg = - match he with - | C.Appl l -> C.Appl (l @ [arg]) - | t -> C.Appl [t;arg] in - let rec aux context ind arity1 arity2 = - let arity1 = R.whd ~subst context arity1 in - let arity2 = R.whd ~subst context arity2 in - match arity1,arity2 with - | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> - if not (R.are_convertible ~subst ~metasenv context so1 so2) then - raise (TypeCheckerFailure (lazy (Printf.sprintf - "In outtype: expected %s, found %s" - (NCicPp.ppterm ~subst ~metasenv ~context so1) - (NCicPp.ppterm ~subst ~metasenv ~context so2) - ))); - aux ((name, C.Decl so1)::context) - (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 - | C.Sort _, C.Prod (name,so,ta) -> - if not (R.are_convertible ~subst ~metasenv context so ind) then - raise (TypeCheckerFailure (lazy (Printf.sprintf - "In outtype: expected %s, found %s" - (NCicPp.ppterm ~subst ~metasenv ~context ind) - (NCicPp.ppterm ~subst ~metasenv ~context so) - ))); - (match arity1,ta with - | (C.Sort (C.CProp | C.Type _), C.Sort _) - | (C.Sort C.Prop, C.Sort C.Prop) -> () - | (C.Sort C.Prop, C.Sort (C.CProp | C.Type _)) -> - let inductive,leftno,itl,_,i = E.get_checked_indtys r in - let itl_len = List.length itl in - let _,name,ty,cl = List.nth itl i in - let cl_len = List.length cl in - (* is it a singleton or empty non recursive and non informative - definition? *) - if not - (cl_len = 0 || - (itl_len = 1 && cl_len = 1 && - is_non_informative [name,C.Decl ty] leftno - (let _,_,x = List.nth cl 0 in x))) - then - raise (TypeCheckerFailure (lazy - ("Sort elimination not allowed"))); - | _,_ -> ()) - | _,_ -> () - in - aux + "(1) Local and canonical context %s have different lengths" + (PP.ppterm ~subst ~metasenv ~context term)))) in typeof_aux context term -and check_mutual_inductive_defs uri ~metasenv ~subst is_ind leftno tyl = +and check_allowed_sort_elimination ~subst ~metasenv r = + let mkapp he arg = + match he with + | C.Appl l -> C.Appl (l @ [arg]) + | t -> C.Appl [t;arg] in + let rec aux context ind arity1 arity2 = + let arity1 = R.whd ~subst context arity1 in + let arity2 = R.whd ~subst context arity2 in + match arity1,arity2 with + | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> + if not (R.are_convertible ~metasenv ~subst context so1 so2) then + raise (TypeCheckerFailure (lazy (Printf.sprintf + "In outtype: expected %s, found %s" + (PP.ppterm ~subst ~metasenv ~context so1) + (PP.ppterm ~subst ~metasenv ~context so2) + ))); + aux ((name, C.Decl so1)::context) + (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 + | C.Sort _, C.Prod (name,so,ta) -> + if not (R.are_convertible ~metasenv ~subst context so ind) then + raise (TypeCheckerFailure (lazy (Printf.sprintf + "In outtype: expected %s, found %s" + (PP.ppterm ~subst ~metasenv ~context ind) + (PP.ppterm ~subst ~metasenv ~context so) + ))); + (match arity1, R.whd ~subst ((name,C.Decl so)::context) ta with + | (C.Sort C.Type _, C.Sort _) + | (C.Sort C.Prop, C.Sort C.Prop) -> () + | (C.Sort C.Prop, C.Sort C.Type _) -> + (* TODO: we should pass all these parameters since we + * have them already *) + let _,leftno,itl,_,i = E.get_checked_indtys r in + let itl_len = List.length itl in + let _,itname,ittype,cl = List.nth itl i in + let cl_len = List.length cl in + (* is it a singleton, non recursive and non informative + definition or an empty one? *) + if not + (cl_len = 0 || + (itl_len = 1 && cl_len = 1 && + let _,_,constrty = List.hd cl in + is_non_recursive_singleton + ~subst r itname ittype constrty && + is_non_informative ~metasenv ~subst leftno constrty)) + then + raise (TypeCheckerFailure (lazy + ("Sort elimination not allowed"))); + | _,_ -> ()) + | _,_ -> () + in + aux + +and eat_prods ~subst ~metasenv context he ty_he args_with_ty = + let rec aux ty_he = function + | [] -> ty_he + | (arg, ty_arg)::tl -> + match R.whd ~subst context ty_he with + | C.Prod (_,s,t) -> + if R.are_convertible ~metasenv ~subst context ty_arg s then + aux (S.subst ~avoid_beta_redexes:true arg t) tl + else + raise + (TypeCheckerFailure + (lazy (Printf.sprintf + ("Appl: wrong application of %s: the argument %s has type"^^ + "\n%s\nbut it should have type \n%s\nContext:\n%s\n") + (PP.ppterm ~subst ~metasenv ~context he) + (PP.ppterm ~subst ~metasenv ~context arg) + (PP.ppterm ~subst ~metasenv ~context ty_arg) + (PP.ppterm ~subst ~metasenv ~context s) + (PP.ppcontext ~subst ~metasenv context)))) + | _ -> + raise + (TypeCheckerFailure + (lazy (Printf.sprintf + "Appl: %s is not a function, it cannot be applied" + (PP.ppterm ~subst ~metasenv ~context + (let res = List.length tl in + let eaten = List.length args_with_ty - res in + (C.Appl + (he::List.map fst + (fst (HExtlib.split_nth "NTC 9" eaten args_with_ty))))))))) + in + aux ty_he args_with_ty + +and is_non_recursive_singleton ~subst (Ref.Ref (uri,_)) iname ity cty = + let ctx = [iname, C.Decl ity] in + let cty = debruijn uri 1 [] cty in + let len = List.length ctx in + let rec aux ctx n nn t = + match R.whd ~subst ctx t with + | C.Prod (name, src, tgt) -> + does_not_occur ~subst ctx n nn src && + aux ((name, C.Decl src) :: ctx) (n+1) (nn+1) tgt + | C.Rel k | C.Appl (C.Rel k :: _) when k = nn -> true + | _ -> assert false + in + aux ctx (len-1) len cty + +and is_non_informative ~metasenv ~subst paramsno c = + let rec aux context c = + match R.whd ~subst context c with + | C.Prod (n,so,de) -> + let s = typeof ~metasenv ~subst context so in + s = C.Sort C.Prop && aux ((n,(C.Decl so))::context) de + | _ -> true in + let context',dx = NCicReduction.split_prods ~subst [] paramsno c in + aux context' dx + +and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = (* let's check if the arity of the inductive types are well formed *) List.iter (fun (_,_,x,_) -> ignore (typeof ~subst ~metasenv [] x)) tyl; (* let's check if the types of the inductive constructors are well formed. *) let len = List.length tyl in - let tys = List.map (fun (_,n,ty,_) -> (n,(C.Decl ty))) tyl in + let tys = List.rev_map (fun (_,n,ty,_) -> (n,(C.Decl ty))) tyl in ignore (List.fold_right - (fun (_,_,_,cl) i -> + (fun (it_relev,_,ty,cl) i -> + let context,ty_sort = NCicReduction.split_prods ~subst [] ~-1 ty in + let sx_context_ty_rev,_ = HExtlib.split_nth "NTC 10" leftno (List.rev context) in List.iter - (fun (_,name,te) -> - let debruijnedte = debruijn uri len te in - ignore (typeof ~subst ~metasenv tys debruijnedte); + (fun (k_relev,_,te) -> + let k_relev = + try snd (HExtlib.split_nth "NTC 11" leftno k_relev) + with Failure _ -> k_relev in + let te = debruijn uri len [] te in + let context,te = NCicReduction.split_prods ~subst tys leftno te in + let _,chopped_context_rev = + HExtlib.split_nth "NTC 12" (List.length tys) (List.rev context) in + let sx_context_te_rev,_ = + HExtlib.split_nth "NTC 13" leftno chopped_context_rev in + (try + ignore (List.fold_left2 + (fun context item1 item2 -> + let convertible = + match item1,item2 with + (n1,C.Decl ty1),(n2,C.Decl ty2) -> + n1 = n2 && + R.are_convertible ~metasenv ~subst context ty1 ty2 + | (n1,C.Def (bo1,ty1)),(n2,C.Def (bo2,ty2)) -> + n1 = n2 + && R.are_convertible ~metasenv ~subst context ty1 ty2 + && R.are_convertible ~metasenv ~subst context bo1 bo2 + | _,_ -> false + in + if not convertible then + raise (TypeCheckerFailure (lazy + ("Mismatch between the left parameters of the constructor " ^ + "and those of its inductive type"))) + else + item1::context + ) [] sx_context_ty_rev sx_context_te_rev) + with Invalid_argument "List.fold_left2" -> assert false); + let con_sort = typeof ~subst ~metasenv context te in + (match R.whd ~subst context con_sort, R.whd ~subst [] ty_sort with + (C.Sort (C.Type u1) as s1), (C.Sort (C.Type u2) as s2) -> + if not (E.universe_leq u1 u2) then + raise + (TypeCheckerFailure + (lazy ("The type " ^ PP.ppterm ~metasenv ~subst ~context s1^ + " of the constructor is not included in the inductive" ^ + " type sort " ^ PP.ppterm ~metasenv ~subst ~context s2))) + | C.Sort _, C.Sort C.Prop + | C.Sort _, C.Sort C.Type _ -> () + | _, _ -> + raise + (TypeCheckerFailure + (lazy ("Wrong constructor or inductive arity shape")))); (* let's check also the positivity conditions *) - if false (* + if not - (are_all_occurrences_positive tys uri indparamsno i 0 len - debruijnedte) *) + (are_all_occurrences_positive ~subst context uri leftno + (i+leftno) leftno (len+leftno) te) then raise (TypeCheckerFailure - (lazy ("Non positive occurence in "^NUri.string_of_uri uri)))) + (lazy ("Non positive occurence in "^NUri.string_of_uri + uri))) + else check_relevance ~subst ~metasenv context k_relev te) cl; - i + 1) + check_relevance ~subst ~metasenv [] it_relev ty; + i+1) tyl 1) -and eat_lambdas ~subst ~metasenv context n te = - match (n, R.whd ~subst context te) with - | (0, _) -> (te, context) - | (n, C.Lambda (name,so,ta)) when n > 0 -> - eat_lambdas ~subst ~metasenv ((name,(C.Decl so))::context) (n - 1) ta - | (n, te) -> - raise (AssertFailure (lazy (Printf.sprintf "9 (%d, %s)" n - (NCicPp.ppterm ~subst ~metasenv ~context te)))) +and check_relevance ~subst ~metasenv context relevance ty = + let error context ty = + raise (TypeCheckerFailure + (lazy ("Wrong relevance declaration: " ^ + String.concat "," (List.map string_of_bool relevance)^ + "\nfor type: "^PP.ppterm ~metasenv ~subst ~context ty))) + in + let rec aux context relevance ty = + match R.whd ~subst context ty with + | C.Prod (name,so,de) -> + let sort = typeof ~subst ~metasenv context so in + (match (relevance,R.whd ~subst context sort) with + | [],_ -> () + | false::tl,C.Sort C.Prop -> aux ((name,(C.Decl so))::context) tl de + | true::_,C.Sort C.Prop + | false::_,C.Sort _ + | false::_,C.Meta _ -> error context ty + | true::tl,C.Sort _ + | true::tl,C.Meta _ -> aux ((name,(C.Decl so))::context) tl de + | _ -> raise (AssertFailure (lazy (Printf.sprintf + "Prod: the type %s of the source of %s is not a sort" + (PP.ppterm ~subst ~metasenv ~context sort) + (PP.ppterm ~subst ~metasenv ~context so))))) + | _ -> (match relevance with + | [] -> () + | _::_ -> error context ty) + in aux context relevance ty -and guarded_by_destructors ~subst ~metasenv context recfuns t = - let recursor f k t = NCicUtils.fold shift_k k (fun k () -> f k) () t in - let rec aux (context, recfuns, x, safes as k) = function - | C.Rel m as t when List.mem_assoc m recfuns -> +and guarded_by_destructors r_uri r_len ~subst ~metasenv context recfuns t = + let recursor f k t = U.fold shift_k k (fun k () -> f k) () t in + let rec aux (context, recfuns, x as k) t = +(* + prerr_endline ("GB:\n" ^ + PP.ppcontext ~subst ~metasenv context^ + PP.ppterm ~metasenv ~subst ~context t^ + string_of_recfuns ~subst ~metasenv ~context recfuns); +*) + try + match t with + | C.Rel m as t when is_dangerous m recfuns -> raise (NotGuarded (lazy - (NCicPp.ppterm ~subst ~metasenv ~context t ^ " passed around"))) - | C.Rel m -> - (match List.nth context (m-1) with - | _,C.Decl _ -> () - | _,C.Def (bo,_) -> aux (context, recfuns, x, safes) (S.lift m bo)) - | C.Meta _ -> () - | C.Appl ((C.Rel m)::tl) as t when List.mem_assoc m recfuns -> - let rec_no = List.assoc m recfuns in + (PP.ppterm ~subst ~metasenv ~context t ^ + " is a partial application of a fix"))) + | C.Appl ((C.Rel m)::tl) as t when is_dangerous m recfuns -> + let rec_no = get_recno m recfuns in if not (List.length tl > rec_no) then raise (NotGuarded (lazy - (NCicPp.ppterm ~context ~subst ~metasenv t ^ + (PP.ppterm ~context ~subst ~metasenv t ^ " is a partial application of a fix"))) else let rec_arg = List.nth tl rec_no in - if not (is_really_smaller ~subst ~metasenv k rec_arg) then - raise (NotGuarded (lazy - (NCicPp.ppterm ~context ~subst ~metasenv rec_arg ^ " not smaller"))); + if not (is_really_smaller r_uri r_len ~subst ~metasenv k rec_arg) then + raise (NotGuarded (lazy (Printf.sprintf ("Recursive call %s, %s is not" + ^^ " smaller.\ncontext:\n%s") (PP.ppterm ~context ~subst ~metasenv + t) (PP.ppterm ~context ~subst ~metasenv rec_arg) + (PP.ppcontext ~subst ~metasenv context)))); List.iter (aux k) tl - | C.Match (Ref.Ref (_,uri,_) as ref,outtype,term,pl) as t -> + | C.Appl ((C.Rel m)::tl) when is_unfolded m recfuns -> + let fixed_args = get_fixed_args m recfuns in + HExtlib.list_iter_default2 + (fun x b -> if not b then aux k x) tl false fixed_args + | C.Rel m -> + (match List.nth context (m-1) with + | _,C.Decl _ -> () + | _,C.Def (bo,_) -> aux k (S.lift m bo)) + | C.Meta _ -> () + | C.Appl (C.Const ((Ref.Ref (uri,Ref.Fix (i,recno,_))) as r)::args) -> + if List.exists (fun t -> try aux k t;false with NotGuarded _ -> true) args + then + let fl,_,_ = E.get_checked_fixes_or_cofixes r in + let ctx_tys, bos = + List.split (List.map (fun (_,name,_,ty,bo) -> (name, C.Decl ty), bo) fl) + in + let fl_len = List.length fl in + let bos = List.map (debruijn uri fl_len context) bos in + let j = List.fold_left min max_int (List.map (fun (_,_,i,_,_)->i) fl) in + let ctx_len = List.length context in + (* we may look for fixed params not only up to j ... *) + let fa = fixed_args bos j ctx_len (ctx_len + fl_len) in + HExtlib.list_iter_default2 + (fun x b -> if not b then aux k x) args false fa; + let context = context@ctx_tys in + let ctx_len = List.length context in + let extra_recfuns = + HExtlib.list_mapi (fun _ i -> ctx_len - i, UnfFix fa) ctx_tys + in + let new_k = context, extra_recfuns@recfuns, x in + let bos_and_ks = + HExtlib.list_mapi + (fun bo fno -> + let bo_and_k = + eat_or_subst_lambdas ~subst ~metasenv j bo fa args new_k + in + if + fno = i && + List.length args > recno && + (*case where the recursive argument is already really_smaller *) + is_really_smaller r_uri r_len ~subst ~metasenv k + (List.nth args recno) + then + let bo,(context, _, _ as new_k) = bo_and_k in + let bo, context' = + eat_lambdas ~subst ~metasenv context (recno + 1 - j) bo in + let new_context_part,_ = + HExtlib.split_nth "NTC 14" (List.length context' - List.length context) + context' in + let k = List.fold_right shift_k new_context_part new_k in + let context, recfuns, x = k in + let k = context, (1,Safe)::recfuns, x in + bo,k + else + bo_and_k + ) bos + in + List.iter (fun (bo,k) -> aux k bo) bos_and_ks + | C.Match (Ref.Ref (_,Ref.Ind (true,_,_)),outtype,term,pl) as t -> (match R.whd ~subst context term with - | C.Rel m | C.Appl (C.Rel m :: _ ) as t when List.mem m safes || m = x -> - let isinductive, paramsno, tl, _, i = E.get_checked_indtys ref in - if not isinductive then recursor aux k t - else - let c_ctx,len,cl = fix_lefts_in_constrs ~subst uri paramsno tl i in + | C.Rel m | C.Appl (C.Rel m :: _ ) as t when is_safe m recfuns || m = x -> + let ty = typeof ~subst ~metasenv context term in + let dc_ctx, dcl, start, stop = + specialize_and_abstract_constrs ~subst r_uri r_len context ty in let args = match t with C.Appl (_::tl) -> tl | _ -> [] in aux k outtype; List.iter (aux k) args; List.iter2 - (fun p (_,_,bruijnedc) -> - let rl = recursive_args ~subst ~metasenv c_ctx 0 len bruijnedc in + (fun p (_,dc) -> + let rl = recursive_args ~subst ~metasenv dc_ctx start stop dc in let p, k = get_new_safes ~subst k p rl in aux k p) - pl cl + pl dcl | _ -> recursor aux k t) | t -> recursor aux k t + with + NotGuarded _ as exc -> + let t' = R.whd ~delta:0 ~subst context t in + if t = t' then raise exc + else aux k t' in - try aux (context, recfuns, 1, []) t + try aux (context, recfuns, 1) t with NotGuarded s -> raise (TypeCheckerFailure s) +and guarded_by_constructors ~subst ~metasenv context t indURI indlen nn = + let rec aux context n nn h te = + match R.whd ~subst context te with + | C.Rel m when m > n && m <= nn -> h + | C.Rel _ | C.Meta _ -> true + | C.Sort _ + | C.Implicit _ + | C.Prod _ + | C.Const (Ref.Ref (_,Ref.Ind _)) + | C.LetIn _ -> raise (AssertFailure (lazy "17")) + | C.Lambda (name,so,de) -> + does_not_occur ~subst context n nn so && + aux ((name,C.Decl so)::context) (n + 1) (nn + 1) h de + | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> + h && List.for_all (does_not_occur ~subst context n nn) tl + | C.Const (Ref.Ref (_,Ref.Con _)) -> true + | C.Appl (C.Const (Ref.Ref (_, Ref.Con (_,j,paramsno))) :: tl) as t -> + let ty_t = typeof ~subst ~metasenv context t in + let dc_ctx, dcl, start, stop = + specialize_and_abstract_constrs ~subst indURI indlen context ty_t in + let _, dc = List.nth dcl (j-1) in (* - | C.Fix (_, fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - and x_plus_len = x + len - and tys,_ = - List.fold_left - (fun (types,len) (n,_,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - and safes' = List.map (fun x -> x + len) safes in - List.fold_right - (fun (_,_,ty,bo) i -> - i && guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && - guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl - x_plus_len safes' bo - ) fl true - | C.CoFix (_, fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - and x_plus_len = x + len - and tys,_ = - List.fold_left - (fun (types,len) (n,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - and safes' = List.map (fun x -> x + len) safes in - List.fold_right - (fun (_,ty,bo) i -> - i && - guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && - guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl - x_plus_len safes' bo - ) fl true -*) - -and guarded_by_constructors ~subst _ _ _ _ _ _ _ = assert false + prerr_endline (PP.ppterm ~subst ~metasenv ~context:dc_ctx dc); + prerr_endline (PP.ppcontext ~subst ~metasenv dc_ctx); + *) + let rec_params = recursive_args ~subst ~metasenv dc_ctx start stop dc in + let rec analyse_instantiated_type rec_spec args = + match rec_spec, args with + | h::rec_spec, he::args -> + aux context n nn h he && analyse_instantiated_type rec_spec args + | _,[] -> true + | _ -> raise (AssertFailure (lazy + ("Too many args for constructor: " ^ String.concat " " + (List.map (fun x-> PP.ppterm ~subst ~metasenv ~context x) args)))) + in + let _, args = HExtlib.split_nth "NTC 15" paramsno tl in + analyse_instantiated_type rec_params args + | C.Appl ((C.Match (_,out,te,pl))::_) + | C.Match (_,out,te,pl) as t -> + let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in + List.for_all (does_not_occur ~subst context n nn) tl && + does_not_occur ~subst context n nn out && + does_not_occur ~subst context n nn te && + List.for_all (aux context n nn h) pl +(* IMPOSSIBLE unsless we allow to pass cofix to other fix/cofix as we do for + higher order fix in g_b_destructors. + | C.Const (Ref.Ref (u,(Ref.Fix _| Ref.CoFix _)) as ref) + | C.Appl(C.Const (Ref.Ref(u,(Ref.Fix _| Ref.CoFix _)) as ref) :: _) as t -> + let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in + let fl,_,_ = E.get_checked_fixes_or_cofixes ref in + let len = List.length fl in + let tys = List.map (fun (_,n,_,ty,_) -> n, C.Decl ty) fl in + List.for_all (does_not_occur ~subst context n nn) tl && + List.for_all + (fun (_,_,_,_,bo) -> + aux (context@tys) n nn h (debruijn u len context bo)) + fl +*) + | C.Const _ + | C.Appl _ as t -> does_not_occur ~subst context n nn t + in + aux context 0 nn false t + and recursive_args ~subst ~metasenv context n nn te = - match R.whd context te with - | C.Rel _ | C.Appl _ -> [] + match R.whd ~subst context te with + | C.Rel _ | C.Appl _ | C.Const _ -> [] | C.Prod (name,so,de) -> (not (does_not_occur ~subst context n nn so)) :: (recursive_args ~subst ~metasenv ((name,(C.Decl so))::context) (n+1) (nn + 1) de) | t -> - raise (AssertFailure (lazy ("recursive_args:" ^ NCicPp.ppterm ~subst + raise (AssertFailure (lazy ("recursive_args:" ^ PP.ppterm ~subst ~metasenv ~context:[] t))) -and get_new_safes ~subst (context, recfuns, x, safes as k) p rl = +and get_new_safes ~subst (context, recfuns, x as k) p rl = match R.whd ~subst context p, rl with | C.Lambda (name,so,ta), b::tl -> - let safes = (if b then [0] else []) @ safes in + let recfuns = (if b then [0,Safe] else []) @ recfuns in get_new_safes ~subst - (shift_k (name,(C.Decl so)) (context, recfuns, x, safes)) ta tl + (shift_k (name,(C.Decl so)) (context, recfuns, x)) ta tl | C.Meta _ as e, _ | e, [] -> e, k | _ -> raise (AssertFailure (lazy "Ill formed pattern")) -and split_prods ~subst context n te = - match n, R.whd ~subst context te with - | 0, _ -> context,te - | n, C.Prod (name,so,ta) when n > 0 -> - split_prods ~subst ((name,(C.Decl so))::context) (n - 1) ta - | _ -> raise (AssertFailure (lazy "split_prods")) - -and is_really_smaller ~subst ~metasenv (context, recfuns, x, safes as k) te = +and is_really_smaller + r_uri r_len ~subst ~metasenv (context, recfuns, x as k) te += match R.whd ~subst context te with - | C.Rel m when List.mem m safes -> true - | C.Rel _ -> false - | C.LetIn _ -> raise (AssertFailure (lazy "letin after whd")) - | C.Sort _ | C.Implicit _ | C.Prod _ | C.Lambda _ - | C.Const (Ref.Ref (_,_,(Ref.Decl | Ref.Def | Ref.Ind _ | Ref.CoFix _))) -> - raise (AssertFailure (lazy "not a constructor")) - | C.Appl ([]|[_]) -> raise (AssertFailure (lazy "empty/unary appl")) + | C.Rel m when is_safe m recfuns -> true + | C.Lambda (name, s, t) -> + is_really_smaller r_uri r_len ~subst ~metasenv (shift_k (name,C.Decl s) k) t | C.Appl (he::_) -> - (*CSC: sulla coda ci vogliono dei controlli? secondo noi no, ma *) - (*CSC: solo perche' non abbiamo trovato controesempi *) - (*TASSI: da capire soprattutto se he è un altro fix che non ha ridotto...*) - is_really_smaller ~subst ~metasenv k he - | C.Const (Ref.Ref (_,_,Ref.Con _)) -> false - | C.Const (Ref.Ref (_,_,Ref.Fix _)) -> assert false - (*| C.Fix (_, fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - and x_plus_len = x + len - and tys,_ = - List.fold_left - (fun (types,len) (n,_,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - and safes' = List.map (fun x -> x + len) safes in - List.fold_right - (fun (_,_,ty,bo) i -> - i && - is_really_smaller ~subst (tys@context) n_plus_len nn_plus_len kl - x_plus_len safes' bo - ) fl true*) - | C.Meta _ -> - true (* XXX if this check is repeated when the user completes the - definition *) - | C.Match (Ref.Ref (_,uri,_) as ref,outtype,term,pl) -> + is_really_smaller r_uri r_len ~subst ~metasenv k he + | C.Rel _ + | C.Const (Ref.Ref (_,Ref.Con _)) -> false + | C.Appl [] + | C.Const (Ref.Ref (_,Ref.Fix _)) -> assert false + | C.Meta _ -> true + | C.Match (Ref.Ref (_,Ref.Ind (isinductive,_,_)),_,term,pl) -> (match term with - | C.Rel m | C.Appl (C.Rel m :: _ ) when List.mem m safes || m = x -> - let isinductive, paramsno, tl, _, i = E.get_checked_indtys ref in + | C.Rel m | C.Appl (C.Rel m :: _ ) when is_safe m recfuns || m = x -> if not isinductive then - List.for_all (is_really_smaller ~subst ~metasenv k) pl + List.for_all (is_really_smaller r_uri r_len ~subst ~metasenv k) pl else - let c_ctx,len,cl = fix_lefts_in_constrs ~subst uri paramsno tl i in + let ty = typeof ~subst ~metasenv context term in + let dc_ctx, dcl, start, stop = + specialize_and_abstract_constrs ~subst r_uri r_len context ty in List.for_all2 - (fun p (_,_,debruijnedte) -> - let rl'=recursive_args ~subst ~metasenv c_ctx 0 len debruijnedte in - let e, k = get_new_safes ~subst k p rl' in - is_really_smaller ~subst ~metasenv k e) - pl cl - | _ -> List.for_all (is_really_smaller ~subst ~metasenv k) pl) + (fun p (_,dc) -> + let rl = recursive_args ~subst ~metasenv dc_ctx start stop dc in + let e, k = get_new_safes ~subst k p rl in + is_really_smaller r_uri r_len ~subst ~metasenv k e) + pl dcl + | _ -> List.for_all (is_really_smaller r_uri r_len ~subst ~metasenv k) pl) + | _ -> assert false and returns_a_coinductive ~subst context ty = match R.whd ~subst context ty with - | C.Const (Ref.Ref (_,uri,Ref.Ind _) as ref) - | C.Appl (C.Const (Ref.Ref (_,uri,Ref.Ind _) as ref)::_) -> - let isinductive, _, _, _, _ = E.get_checked_indtys ref in - if isinductive then None else (Some uri) + | C.Const (Ref.Ref (uri,Ref.Ind (false,_,_)) as ref) + | C.Appl (C.Const (Ref.Ref (uri,Ref.Ind (false,_,_)) as ref)::_) -> + let _, _, itl, _, _ = E.get_checked_indtys ref in + Some (uri,List.length itl) | C.Prod (n,so,de) -> returns_a_coinductive ~subst ((n,C.Decl so)::context) de | _ -> None -and type_of_constant ((Ref.Ref (_,uri,_)) as ref) = - let cobj = - match E.get_obj uri with - | true, cobj -> cobj - | false, uobj -> - !logger (`Start_type_checking uri); - check_obj_well_typed uobj; - E.add_obj uobj; - !logger (`Type_checking_completed uri); - if not (fst (E.get_obj uri)) then - raise (AssertFailure (lazy "environment error")); - uobj - in - match cobj, ref with - | (_,_,_,_,C.Inductive (_,_,tl,_)), Ref.Ref (_,_,Ref.Ind i) -> +and type_of_constant ((Ref.Ref (uri,_)) as ref) = + let error () = + raise (TypeCheckerFailure (lazy "Inconsistent cached infos in reference")) + in + match E.get_checked_obj uri, ref with + | (_,_,_,_,C.Inductive(isind1,lno1,tl,_)),Ref.Ref(_,Ref.Ind (isind2,i,lno2))-> + if isind1 <> isind2 || lno1 <> lno2 then error (); let _,_,arity,_ = List.nth tl i in arity - | (_,_,_,_,C.Inductive (_,_,tl,_)), Ref.Ref (_,_,Ref.Con (i,j)) -> + | (_,_,_,_,C.Inductive (_,lno1,tl,_)), Ref.Ref (_,Ref.Con (i,j,lno2)) -> + if lno1 <> lno2 then error (); let _,_,_,cl = List.nth tl i in let _,_,arity = List.nth cl (j-1) in arity - | (_,_,_,_,C.Fixpoint (_,fl,_)), Ref.Ref (_,_,(Ref.Fix (i,_)|Ref.CoFix i)) -> + | (_,_,_,_,C.Fixpoint (false,fl,_)), Ref.Ref (_,Ref.CoFix i) -> let _,_,_,arity,_ = List.nth fl i in arity - | (_,_,_,_,C.Constant (_,_,_,ty,_)), Ref.Ref (_,_,(Ref.Def |Ref.Decl)) -> ty - | _ -> raise (AssertFailure (lazy "type_of_constant: environment/reference")) + | (_,h1,_,_,C.Fixpoint (true,fl,_)), Ref.Ref (_,Ref.Fix (i,recno2,h2)) -> + let _,_,recno1,arity,_ = List.nth fl i in + if h1 <> h2 || recno1 <> recno2 then error (); + arity + | (_,_,_,_,C.Constant (_,_,_,ty,_)), Ref.Ref (_,Ref.Decl) -> ty + | (_,h1,_,_,C.Constant (_,_,_,ty,_)), Ref.Ref (_,Ref.Def h2) -> + if h1 <> h2 then error (); + ty + | _ -> + raise (AssertFailure + (lazy ("type_of_constant: environment/reference: " ^ + Ref.string_of_reference ref))) + +and get_relevance ~metasenv ~subst context t args = + let ty = typeof ~subst ~metasenv context t in + let rec aux context ty = function + | [] -> [] + | arg::tl -> match R.whd ~subst context ty with + | C.Prod (_,so,de) -> + let sort = typeof ~subst ~metasenv context so in + let new_ty = S.subst ~avoid_beta_redexes:true arg de in + (*prerr_endline ("so: " ^ PP.ppterm ~subst ~metasenv:[] + ~context so); + prerr_endline ("sort: " ^ PP.ppterm ~subst ~metasenv:[] + ~context sort);*) + (match R.whd ~subst context sort with + | C.Sort C.Prop -> + false::(aux context new_ty tl) + | C.Sort _ + | C.Meta _ -> true::(aux context new_ty tl) + | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf + "Prod: the type %s of the source of %s is not a sort" + (PP.ppterm ~subst ~metasenv ~context sort) + (PP.ppterm ~subst ~metasenv ~context so))))) + | _ -> + raise + (TypeCheckerFailure + (lazy (Printf.sprintf + "Appl: %s is not a function, it cannot be applied" + (PP.ppterm ~subst ~metasenv ~context + (let res = List.length tl in + let eaten = List.length args - res in + (C.Appl + (t::fst + (HExtlib.split_nth "NTC 16" eaten args)))))))) + in aux context ty args +;; -and check_obj_well_typed (uri,height,metasenv,subst,kind) = - (* CSC: here we should typecheck the metasenv and the subst *) - assert (metasenv = [] && subst = []); +let typecheck_context ~metasenv ~subst context = + ignore + (List.fold_right + (fun d context -> + begin + match d with + _,C.Decl t -> ignore (typeof ~metasenv ~subst:[] context t) + | name,C.Def (te,ty) -> + ignore (typeof ~metasenv ~subst:[] context ty); + let ty' = typeof ~metasenv ~subst:[] context te in + if not (R.are_convertible ~metasenv ~subst context ty' ty) then + raise (AssertFailure (lazy (Printf.sprintf ( + "the type of the definiens for %s in the context is not "^^ + "convertible with the declared one.\n"^^ + "inferred type:\n%s\nexpected type:\n%s") + name (PP.ppterm ~subst ~metasenv ~context ty') + (PP.ppterm ~subst ~metasenv ~context ty)))) + end; + d::context + ) context []) +;; + +let typecheck_metasenv metasenv = + ignore + (List.fold_left + (fun metasenv (i,(_,context,ty) as conj) -> + if List.mem_assoc i metasenv then + raise (TypeCheckerFailure (lazy ("duplicate meta " ^ string_of_int i ^ + " in metasenv"))); + typecheck_context ~metasenv ~subst:[] context; + ignore (typeof ~metasenv ~subst:[] context ty); + metasenv @ [conj] + ) [] metasenv) +;; + +let typecheck_subst ~metasenv subst = + ignore + (List.fold_left + (fun subst (i,(_,context,ty,bo) as conj) -> + if List.mem_assoc i subst then + raise (AssertFailure (lazy ("duplicate meta " ^ string_of_int i ^ + " in substitution"))); + if List.mem_assoc i metasenv then + raise (AssertFailure (lazy ("meta " ^ string_of_int i ^ + " is both in the metasenv and in the substitution"))); + typecheck_context ~metasenv ~subst context; + ignore (typeof ~metasenv ~subst context ty); + let ty' = typeof ~metasenv ~subst context bo in + if not (R.are_convertible ~metasenv ~subst context ty' ty) then + raise (AssertFailure (lazy (Printf.sprintf ( + "the type of the definiens for %d in the substitution is not "^^ + "convertible with the declared one.\n"^^ + "inferred type:\n%s\nexpected type:\n%s") + i + (PP.ppterm ~subst ~metasenv ~context ty') + (PP.ppterm ~subst ~metasenv ~context ty)))); + subst @ [conj] + ) [] subst) +;; + + +let typecheck_obj (uri,_height,metasenv,subst,kind) = + (* height is not checked since it is only used to implement an optimization *) + typecheck_metasenv metasenv; + typecheck_subst ~metasenv subst; match kind with - | C.Constant (_,_,Some te,ty,_) -> -(* - prerr_endline ("TY: " ^ NCicPp.ppterm ~subst ~metasenv ~context:[] ty); - prerr_endline ("BO: " ^ NCicPp.ppterm ~subst ~metasenv ~context:[] te); -*) + | C.Constant (relevance,_,Some te,ty,_) -> let _ = typeof ~subst ~metasenv [] ty in let ty_te = typeof ~subst ~metasenv [] te in -(* prerr_endline "XXXX"; *) - if not (R.are_convertible ~subst ~metasenv [] ty_te ty) then - raise (TypeCheckerFailure (lazy (Printf.sprintf - "the type of the body is not the one expected:\n%s\nvs\n%s" - (NCicPp.ppterm ~subst ~metasenv ~context:[] ty_te) - (NCicPp.ppterm ~subst ~metasenv ~context:[] ty)))) - | C.Constant (_,_,None,ty,_) -> ignore (typeof ~subst ~metasenv [] ty) - | C.Inductive (is_ind, leftno, tyl, _) -> - check_mutual_inductive_defs uri ~metasenv ~subst is_ind leftno tyl + if not (R.are_convertible ~metasenv ~subst [] ty_te ty) then + raise (TypeCheckerFailure (lazy (Printf.sprintf ( + "the type of the body is not convertible with the declared one.\n"^^ + "inferred type:\n%s\nexpected type:\n%s") + (PP.ppterm ~subst ~metasenv ~context:[] ty_te) + (PP.ppterm ~subst ~metasenv ~context:[] ty)))); + check_relevance ~subst ~metasenv [] relevance ty + (*check_relevance ~in_type:false ~subst ~metasenv relevance te*) + | C.Constant (relevance,_,None,ty,_) -> + ignore (typeof ~subst ~metasenv [] ty); + check_relevance ~subst ~metasenv [] relevance ty + | C.Inductive (_, leftno, tyl, _) -> + check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl | C.Fixpoint (inductive,fl,_) -> - let types,kl,len = + let types, kl = List.fold_left - (fun (types,kl,len) (_,name,k,ty,_) -> + (fun (types,kl) (relevance,name,k,ty,_) -> let _ = typeof ~subst ~metasenv [] ty in - ((name,(C.Decl (S.lift len ty)))::types, k::kl,len+1) - ) ([],[],0) fl + check_relevance ~subst ~metasenv [] relevance ty; + ((name,C.Decl ty)::types, k::kl) + ) ([],[]) fl in - List.iter (fun (_,name,x,ty,bo) -> - let bo = debruijn uri len bo in - let ty_bo = typeof ~subst ~metasenv types bo in - if not (R.are_convertible ~subst ~metasenv types ty_bo (S.lift len ty)) - then raise (TypeCheckerFailure (lazy ("(Co)Fix: ill-typed bodies"))) - else - if inductive then begin - let m, context = eat_lambdas ~subst ~metasenv types (x + 1) bo in - (* guarded by destructors conditions D{f,k,x,M} *) - let rec enum_from k = - function [] -> [] | v::tl -> (k,v)::enum_from (k+1) tl + let len = List.length types in + let dfl, kl = + List.split (List.map2 + (fun (_,_,_,_,bo) rno -> + let dbo = debruijn uri len [] bo in + dbo, Evil rno) + fl kl) + in + List.iter2 (fun (_,_,x,ty,_) bo -> + let ty_bo = typeof ~subst ~metasenv types bo in + if not (R.are_convertible ~metasenv ~subst types ty_bo ty) + then raise (TypeCheckerFailure (lazy ("(Co)Fix: ill-typed bodies"))) + else + if inductive then begin + let m, context = eat_lambdas ~subst ~metasenv types (x + 1) bo in + let r_uri, r_len = + let he = + match List.hd context with _,C.Decl t -> t | _ -> assert false in - guarded_by_destructors - ~subst ~metasenv context (enum_from (x+2) kl) m - end else - match returns_a_coinductive ~subst [] ty with - | None -> - raise (TypeCheckerFailure - (lazy "CoFix: does not return a coinductive type")) - | Some uri -> - (* guarded by constructors conditions C{f,M} *) - if not (guarded_by_constructors ~subst ~metasenv - types 0 len false bo [] uri) - then - raise (TypeCheckerFailure - (lazy "CoFix: not guarded by constructors")) - ) fl + match R.whd ~subst (List.tl context) he with + | C.Const (Ref.Ref (uri,Ref.Ind _) as ref) + | C.Appl (C.Const (Ref.Ref (uri,Ref.Ind _) as ref) :: _) -> + let _,_,itl,_,_ = E.get_checked_indtys ref in + uri, List.length itl + | _ -> assert false + in + (* guarded by destructors conditions D{f,k,x,M} *) + let rec enum_from k = + function [] -> [] | v::tl -> (k,v)::enum_from (k+1) tl + in + guarded_by_destructors r_uri r_len + ~subst ~metasenv context (enum_from (x+2) kl) m + end else + match returns_a_coinductive ~subst [] ty with + | None -> + raise (TypeCheckerFailure + (lazy "CoFix: does not return a coinductive type")) + | Some (r_uri, r_len) -> + (* guarded by constructors conditions C{f,M} *) + if not + (guarded_by_constructors ~subst ~metasenv types bo r_uri r_len len) + then + raise (TypeCheckerFailure + (lazy "CoFix: not guarded by constructors")) + ) fl dfl +;; + +(* trust *) + +let trust = ref (fun _ -> false);; +let set_trust f = trust := f +let trust_obj obj = !trust obj -let typecheck_obj = check_obj_well_typed;; +(* web interface stuff *) + +let logger = + ref (function (`Start_type_checking _|`Type_checking_completed _|`Type_checking_interrupted _|`Type_checking_failed _|`Trust_obj _) -> ()) +;; + +let set_logger f = logger := f;; + +let typecheck_obj obj = + let u,_,_,_,_ = obj in + try + !logger (`Start_type_checking u); + typecheck_obj obj; + !logger (`Type_checking_completed u) + with + Sys.Break as e -> + !logger (`Type_checking_interrupted u); + raise e + | e -> + !logger (`Type_checking_failed u); + raise e +;; + +E.set_typecheck_obj + (fun obj -> + if trust_obj obj then + let u,_,_,_,_ = obj in + !logger (`Trust_obj u) + else + typecheck_obj obj) +;; + +let _ = NCicReduction.set_get_relevance get_relevance;; + + +let indent = ref 0;; +let debug = true;; +let logger = + let do_indent () = String.make !indent ' ' in + (function + | `Start_type_checking s -> + if debug then + prerr_endline (do_indent () ^ "Start: " ^ NUri.string_of_uri s); + incr indent + | `Type_checking_completed s -> + decr indent; + if debug then + prerr_endline (do_indent () ^ "End: " ^ NUri.string_of_uri s) + | `Type_checking_interrupted s -> + decr indent; + if debug then + prerr_endline (do_indent () ^ "Break: " ^ NUri.string_of_uri s) + | `Type_checking_failed s -> + decr indent; + if debug then + prerr_endline (do_indent () ^ "Fail: " ^ NUri.string_of_uri s) + | `Trust_obj s -> + if debug then + prerr_endline (do_indent () ^ "Trust: " ^ NUri.string_of_uri s)) +;; +(* let _ = set_logger logger ;; *) (* EOF *)