X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Fng_kernel%2FnCicTypeChecker.ml;h=c4c2af477d3a510e33846f2bec5f827635a16ef3;hb=c22f39a5d5afc0ef55beb221e00e2e6703b13d90;hp=56d06a71b673f7edee75136c29204a3d43dd2041;hpb=a86cfc58f7711a50c164a0b8c9f65f9050d60565;p=helm.git diff --git a/helm/software/components/ng_kernel/nCicTypeChecker.ml b/helm/software/components/ng_kernel/nCicTypeChecker.ml index 56d06a71b..c4c2af477 100644 --- a/helm/software/components/ng_kernel/nCicTypeChecker.ml +++ b/helm/software/components/ng_kernel/nCicTypeChecker.ml @@ -96,23 +96,22 @@ let fixed_args bos j n nn = (let rec f = function 0 -> [] | n -> true :: f (n-1) in f j) bos ;; -(* if n < 0, then splits all prods from an arity, returning a sort *) -let rec split_prods ~subst context n te = - match (n, R.whd ~subst context te) with - | (0, _) -> context,te - | (n, C.Sort _) when n <= 0 -> context,te - | (n, C.Prod (name,so,ta)) -> - split_prods ~subst ((name,(C.Decl so))::context) (n - 1) ta - | (_, _) -> raise (AssertFailure (lazy "split_prods")) -;; - -let debruijn uri number_of_types context = +let debruijn uri number_of_types ~subst context = +(* manca la subst! *) let rec aux k t = match t with - | C.Meta (i,(s,C.Ctx l)) -> - let l1 = HExtlib.sharing_map (aux (k-s)) l in - if l1 == l then t else C.Meta (i,(s,C.Ctx l1)) - | C.Meta _ -> t + | C.Meta (i,(s,l)) -> + (try + let _,_,term,_ = U.lookup_subst i subst in + let ts = S.subst_meta (0,l) term in + let ts' = aux (k-s) ts in + if ts == ts' then t else ts' + with U.Subst_not_found _ -> + match l with + C.Ctx l -> + let l1 = HExtlib.sharing_map (aux (k-s)) l in + if l1 == l then t else C.Meta (i,(s,C.Ctx l1)) + | _ -> t) | C.Const (Ref.Ref (uri1,(Ref.Fix (no,_,_) | Ref.CoFix no))) | C.Const (Ref.Ref (uri1,Ref.Ind (_,no,_))) when NUri.eq uri uri1 -> C.Rel (k + number_of_types - no) @@ -121,25 +120,29 @@ let debruijn uri number_of_types context = aux (List.length context) ;; -let sort_of_prod ~metasenv ~subst context (name,s) (t1, t2) = +let sort_of_prod ~metasenv ~subst context (name,s) t (t1, t2) = let t1 = R.whd ~subst context t1 in let t2 = R.whd ~subst ((name,C.Decl s)::context) t2 in match t1, t2 with | C.Sort _, C.Sort C.Prop -> t2 - | C.Sort (C.Type u1), C.Sort (C.Type u2) -> C.Sort (C.Type (u1@u2)) + | C.Sort (C.Type u1), C.Sort (C.Type u2) -> + C.Sort (C.Type (NCicEnvironment.max u1 u2)) | C.Sort C.Prop,C.Sort (C.Type _) -> t2 - | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))), C.Sort _ - | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))), C.Meta (_,(_,(C.Irl 0 | C.Ctx []))) - | C.Sort _, C.Meta (_,(_,(C.Irl 0 | C.Ctx []))) -> t2 - | _ -> + | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))), C.Sort _ -> t2 + | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))), C.Meta (i,(_,(C.Irl 0 | C.Ctx []))) + | C.Sort _, C.Meta (i,(_,(C.Irl 0 | C.Ctx []))) -> + NCic.Meta (i,(0, C.Irl 0)) + | x, (C.Sort _ | C.Meta (_,(_,(C.Irl 0 | C.Ctx [])))) + | _, x -> + let y, context = + if x == t1 then s, context else t, ((name,C.Decl s)::context) + in raise (TypeCheckerFailure (lazy (Printf.sprintf - "Prod: expected two sorts, found = %s, %s" - (PP.ppterm ~subst ~metasenv ~context t1) - (PP.ppterm ~subst ~metasenv ~context t2)))) + "%s is expected to be a type, but its type is %s that is not a sort" + (PP.ppterm ~subst ~metasenv ~context y) + (PP.ppterm ~subst ~metasenv ~context x)))) ;; -(* REMINDER: eat_prods was here *) - (* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) (* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) let rec instantiate_parameters params c = @@ -172,7 +175,7 @@ let specialize_and_abstract_constrs ~subst r_uri r_len context ty_term = | _ -> assert false in context_dcl, - List.map (fun (_,id,ty) -> id, debruijn r_uri r_len context ty) cl, + List.map (fun (_,id,ty) -> id, debruijn r_uri r_len ~subst context ty) cl, len, len + r_len ;; @@ -226,50 +229,73 @@ let rec eat_or_subst_lambdas | (_, te, _, _) -> te, k ;; +let check_homogeneous_call ~subst context indparamsno n uri reduct tl = + let last = + List.fold_left + (fun k x -> + if k = 0 then 0 + else + match R.whd ~subst context x with + | C.Rel m when m = n - (indparamsno - k) -> k - 1 + | _ -> raise (TypeCheckerFailure (lazy + ("Argument "^string_of_int (indparamsno - k + 1) ^ " (of " ^ + string_of_int indparamsno ^ " fixed) is not homogeneous in "^ + "appl:\n"^ PP.ppterm ~context ~subst ~metasenv:[] reduct)))) + indparamsno tl + in + if last <> 0 then + raise (TypeCheckerFailure + (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ + NUri.string_of_uri uri))) +;; -(*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) -(*CSC questa funzione e' simile alla are_all_occurrences_positive, ma fa *) -(*CSC dei controlli leggermente diversi. Viene invocata solamente dalla *) -(*CSC strictly_positive *) -(*CSC definizione (giusta???) tratta dalla mail di Hugo ;-) *) -let rec weakly_positive ~subst context n nn uri te = -(*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) +(* Inductive types being checked for positivity have *) +(* indexes x s.t. n < x <= nn. *) +let rec weakly_positive ~subst context n nn uri indparamsno posuri te = + (*CSC: Not very nice. *) let dummy = C.Sort C.Prop in - (*CSC: mettere in cicSubstitution *) + (*CSC: to be moved in cicSubstitution? *) let rec subst_inductive_type_with_dummy _ = function | C.Const (Ref.Ref (uri',Ref.Ind (true,0,_))) when NUri.eq uri' uri -> dummy - | C.Appl ((C.Const (Ref.Ref (uri',Ref.Ind (true,0,_))))::_) - when NUri.eq uri' uri -> dummy + | C.Appl ((C.Const (Ref.Ref (uri',Ref.Ind (true,0,lno))))::tl) + when NUri.eq uri' uri -> + let _, rargs = HExtlib.split_nth lno tl in + if rargs = [] then dummy else C.Appl (dummy :: rargs) | t -> U.map (fun _ x->x) () subst_inductive_type_with_dummy t in - match R.whd context te with - | C.Const (Ref.Ref (uri',Ref.Ind _)) - | C.Appl ((C.Const (Ref.Ref (uri',Ref.Ind _)))::_) - when NUri.eq uri' uri -> true - | C.Prod (name,source,dest) when - does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> - (* dummy abstraction, so we behave as in the anonimous case *) - strictly_positive ~subst context n nn - (subst_inductive_type_with_dummy () source) && - weakly_positive ~subst ((name,C.Decl source)::context) - (n + 1) (nn + 1) uri dest - | C.Prod (name,source,dest) -> - does_not_occur ~subst context n nn - (subst_inductive_type_with_dummy () source)&& - weakly_positive ~subst ((name,C.Decl source)::context) - (n + 1) (nn + 1) uri dest - | _ -> - raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) + (* this function has the same semantics of are_all_occurrences_positive + but the i-th context entry role is played by dummy and some checks + are skipped because we already know that are_all_occurrences_positive + of uri in te. *) + let rec aux context n nn te = + match R.whd ~subst context te with + | t when t = dummy -> true + | C.Appl (te::rargs) when te = dummy -> + List.for_all (does_not_occur ~subst context n nn) rargs + | C.Prod (name,source,dest) when + does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> + (* dummy abstraction, so we behave as in the anonimous case *) + strictly_positive ~subst context n nn indparamsno posuri source && + aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest + | C.Prod (name,source,dest) -> + does_not_occur ~subst context n nn source && + aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest + | _ -> + raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) + in + aux context n nn (subst_inductive_type_with_dummy () te) -and strictly_positive ~subst context n nn te = - match R.whd context te with +and strictly_positive ~subst context n nn indparamsno posuri te = + match R.whd ~subst context te with | t when does_not_occur ~subst context n nn t -> true - | C.Rel _ -> true + | C.Rel _ when indparamsno = 0 -> true + | C.Appl ((C.Rel m)::tl) as reduct when m > n && m <= nn -> + check_homogeneous_call ~subst context indparamsno n posuri reduct tl; + List.for_all (does_not_occur ~subst context n nn) tl | C.Prod (name,so,ta) -> does_not_occur ~subst context n nn so && - strictly_positive ~subst ((name,C.Decl so)::context) (n+1) (nn+1) ta - | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> - List.for_all (does_not_occur ~subst context n nn) tl + strictly_positive ~subst ((name,C.Decl so)::context) (n+1) (nn+1) + indparamsno posuri ta | C.Appl (C.Const (Ref.Ref (uri,Ref.Ind _) as r)::tl) -> let _,paramsno,tyl,_,i = E.get_checked_indtys r in let _,name,ity,cl = List.nth tyl i in @@ -282,32 +308,16 @@ and strictly_positive ~subst context n nn te = ok && List.for_all (does_not_occur ~subst context n nn) arguments && List.for_all - (weakly_positive ~subst ((name,C.Decl ity)::context) (n+1) (nn+1) uri) cl + (weakly_positive ~subst ((name,C.Decl ity)::context) (n+1) (nn+1) + uri indparamsno posuri) cl | _ -> false (* the inductive type indexes are s.t. n < x <= nn *) and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = - match R.whd context te with + match R.whd ~subst context te with | C.Appl ((C.Rel m)::tl) as reduct when m = i -> - let last = - List.fold_left - (fun k x -> - if k = 0 then 0 - else - match R.whd context x with - | C.Rel m when m = n - (indparamsno - k) -> k - 1 - | _ -> raise (TypeCheckerFailure (lazy - ("Argument "^string_of_int (indparamsno - k + 1) ^ " (of " ^ - string_of_int indparamsno ^ " fixed) is not homogeneous in "^ - "appl:\n"^ PP.ppterm ~context ~subst ~metasenv:[] reduct)))) - indparamsno tl - in - if last = 0 then - List.for_all (does_not_occur ~subst context n nn) tl - else - raise (TypeCheckerFailure - (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ - NUri.string_of_uri uri))) + check_homogeneous_call ~subst context indparamsno n uri reduct tl; + List.for_all (does_not_occur ~subst context n nn) tl | C.Rel m when m = i -> if indparamsno = 0 then true @@ -315,9 +325,9 @@ and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ NUri.string_of_uri uri))) - | C.Prod (name,source,dest) when + | C.Prod (name,source,dest) when does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> - strictly_positive ~subst context n nn source && + strictly_positive ~subst context n nn indparamsno uri source && are_all_occurrences_positive ~subst ((name,C.Decl source)::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest @@ -328,7 +338,6 @@ and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = are_all_occurrences_positive ~subst ((name,C.Decl source)::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | _ -> -prerr_endline ("MM: " ^ NCicPp.ppterm ~subst ~metasenv:[] ~context te); raise (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ (NUri.string_of_uri uri)))) @@ -336,6 +345,28 @@ prerr_endline ("MM: " ^ NCicPp.ppterm ~subst ~metasenv:[] ~context te); exception NotGuarded of string Lazy.t;; +let type_of_branch ~subst context leftno outty cons tycons = + let rec aux liftno context cons tycons = + match R.whd ~subst context tycons with + | C.Const (Ref.Ref (_,Ref.Ind _)) -> C.Appl [S.lift liftno outty ; cons] + | C.Appl (C.Const (Ref.Ref (_,Ref.Ind _))::tl) -> + let _,arguments = HExtlib.split_nth leftno tl in + C.Appl (S.lift liftno outty::arguments@[cons]) + | C.Prod (name,so,de) -> + let cons = + match S.lift 1 cons with + | C.Appl l -> C.Appl (l@[C.Rel 1]) + | t -> C.Appl [t ; C.Rel 1] + in + C.Prod (name,so, aux (liftno+1) ((name,(C.Decl so))::context) cons de) + | t -> raise (AssertFailure + (lazy ("type_of_branch, the contructor has type: " ^ NCicPp.ppterm + ~metasenv:[] ~context:[] ~subst:[] t))) + in + aux 0 context cons tycons +;; + + let rec typeof ~subst ~metasenv context term = let rec typeof_aux context = fun t -> (*prerr_endline (PP.ppterm ~metasenv ~subst ~context t);*) @@ -345,7 +376,9 @@ let rec typeof ~subst ~metasenv context term = match List.nth context (n - 1) with | (_,C.Decl ty) -> S.lift n ty | (_,C.Def (_,ty)) -> S.lift n ty - with Failure _ -> raise (TypeCheckerFailure (lazy "unbound variable"))) + with Failure _ -> + raise (TypeCheckerFailure (lazy ("unbound variable " ^ string_of_int n + ^" under: " ^ NCicPp.ppcontext ~metasenv ~subst context)))) | C.Sort (C.Type [false,u]) -> C.Sort (C.Type [true, u]) | C.Sort (C.Type _) -> raise (AssertFailure (lazy ("Cannot type an inferred type: "^ @@ -357,10 +390,13 @@ let rec typeof ~subst ~metasenv context term = try let _,c,_,ty = U.lookup_subst n subst in c,ty with U.Subst_not_found _ -> try - let _,c,ty = U.lookup_meta n metasenv in c,ty + let _,c,ty = U.lookup_meta n metasenv in c, ty +(* match ty with C.Implicit _ -> assert false | _ -> c,ty *) with U.Meta_not_found _ -> raise (AssertFailure (lazy (Printf.sprintf - "%s not found" (PP.ppterm ~subst ~metasenv ~context t)))) + "%s not found in:\n%s" (PP.ppterm ~subst ~metasenv ~context t) + (PP.ppmetasenv ~subst metasenv) + ))) in check_metasenv_consistency t ~subst ~metasenv context canonical_ctx l; S.subst_meta l ty @@ -368,7 +404,7 @@ let rec typeof ~subst ~metasenv context term = | C.Prod (name,s,t) -> let sort1 = typeof_aux context s in let sort2 = typeof_aux ((name,(C.Decl s))::context) t in - sort_of_prod ~metasenv ~subst context (name,s) (sort1,sort2) + sort_of_prod ~metasenv ~subst context (name,s) t (sort1,sort2) | C.Lambda (n,s,t) -> let sort = typeof_aux context s in (match R.whd ~subst context sort with @@ -385,7 +421,7 @@ let rec typeof ~subst ~metasenv context term = | C.LetIn (n,ty,t,bo) -> let ty_t = typeof_aux context t in let _ = typeof_aux context ty in - if not (R.are_convertible ~subst get_relevance context ty_t ty) then + if not (R.are_convertible ~metasenv ~subst context ty_t ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf @@ -454,9 +490,9 @@ let rec typeof ~subst ~metasenv context term = let ty_p = typeof_aux context p in let ty_cons = typeof_aux context cons in let ty_branch = - type_of_branch ~subst context leftno outtype cons ty_cons 0 + type_of_branch ~subst context leftno outtype cons ty_cons in - j+1, R.are_convertible ~subst get_relevance context ty_p ty_branch, + j+1, R.are_convertible ~metasenv ~subst context ty_p ty_branch, ty_p, ty_branch else j,false,old_p_ty,old_exp_p_ty @@ -476,23 +512,6 @@ let rec typeof ~subst ~metasenv context term = R.head_beta_reduce (C.Appl res) | C.Match _ -> assert false - and type_of_branch ~subst context leftno outty cons tycons liftno = - match R.whd ~subst context tycons with - | C.Const (Ref.Ref (_,Ref.Ind _)) -> C.Appl [S.lift liftno outty ; cons] - | C.Appl (C.Const (Ref.Ref (_,Ref.Ind _))::tl) -> - let _,arguments = HExtlib.split_nth leftno tl in - C.Appl (S.lift liftno outty::arguments@[cons]) - | C.Prod (name,so,de) -> - let cons = - match S.lift 1 cons with - | C.Appl l -> C.Appl (l@[C.Rel 1]) - | t -> C.Appl [t ; C.Rel 1] - in - C.Prod (name,so, - type_of_branch ~subst ((name,(C.Decl so))::context) - leftno outty cons de (liftno+1)) - | _ -> raise (AssertFailure (lazy "type_of_branch")) - (* check_metasenv_consistency checks that the "canonical" context of a metavariable is consitent - up to relocation via the relocation list l - with the actual context *) @@ -507,7 +526,7 @@ let rec typeof ~subst ~metasenv context term = | 0,_,_::_ | _,_,[] -> raise (AssertFailure (lazy (Printf.sprintf - "Local and canonical context %s have different lengths" + "(2) Local and canonical context %s have different lengths" (PP.ppterm ~subst ~context ~metasenv term)))) | m,[],_::_ -> raise (TypeCheckerFailure (lazy (Printf.sprintf @@ -518,7 +537,7 @@ let rec typeof ~subst ~metasenv context term = (_,C.Decl t1), (_,C.Decl t2) | (_,C.Def (t1,_)), (_,C.Def (t2,_)) | (_,C.Def (_,t1)), (_,C.Decl t2) -> - if not (R.are_convertible ~subst get_relevance tl t1 t2) then + if not (R.are_convertible ~metasenv ~subst tl t1 t2) then raise (TypeCheckerFailure (lazy (Printf.sprintf @@ -569,7 +588,7 @@ let rec typeof ~subst ~metasenv context term = with Failure _ -> t) | _ -> t in - if not (R.are_convertible ~subst get_relevance context optimized_t ct) + if not (R.are_convertible ~metasenv ~subst context optimized_t ct) then raise (TypeCheckerFailure @@ -580,7 +599,7 @@ let rec typeof ~subst ~metasenv context term = (PP.ppterm ~subst ~metasenv ~context t)))) | t, (_,C.Decl ct) -> let type_t = typeof_aux context t in - if not (R.are_convertible ~subst get_relevance context type_t ct) then + if not (R.are_convertible ~metasenv ~subst context type_t ct) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context: "^^ @@ -590,77 +609,79 @@ let rec typeof ~subst ~metasenv context term = (PP.ppterm ~subst ~metasenv ~context type_t)))) ) l lifted_canonical_context with - Invalid_argument _ -> + | Invalid_argument "List.iter2" -> raise (AssertFailure (lazy (Printf.sprintf - "Local and canonical context %s have different lengths" + "(1) Local and canonical context %s have different lengths" (PP.ppterm ~subst ~metasenv ~context term)))) - and check_allowed_sort_elimination ~subst ~metasenv r = - let mkapp he arg = - match he with - | C.Appl l -> C.Appl (l @ [arg]) - | t -> C.Appl [t;arg] in - let rec aux context ind arity1 arity2 = - let arity1 = R.whd ~subst context arity1 in - let arity2 = R.whd ~subst context arity2 in - match arity1,arity2 with - | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> - if not (R.are_convertible ~subst get_relevance context so1 so2) then - raise (TypeCheckerFailure (lazy (Printf.sprintf - "In outtype: expected %s, found %s" - (PP.ppterm ~subst ~metasenv ~context so1) - (PP.ppterm ~subst ~metasenv ~context so2) - ))); - aux ((name, C.Decl so1)::context) - (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 - | C.Sort _, C.Prod (name,so,ta) -> - if not (R.are_convertible ~subst get_relevance context so ind) then - raise (TypeCheckerFailure (lazy (Printf.sprintf - "In outtype: expected %s, found %s" - (PP.ppterm ~subst ~metasenv ~context ind) - (PP.ppterm ~subst ~metasenv ~context so) - ))); - (match arity1, R.whd ~subst ((name,C.Decl so)::context) ta with - | (C.Sort C.Type _, C.Sort _) - | (C.Sort C.Prop, C.Sort C.Prop) -> () - | (C.Sort C.Prop, C.Sort C.Type _) -> - (* TODO: we should pass all these parameters since we - * have them already *) - let _,leftno,itl,_,i = E.get_checked_indtys r in - let itl_len = List.length itl in - let _,_,_,cl = List.nth itl i in - let cl_len = List.length cl in - (* is it a singleton or empty non recursive and non informative - definition? *) - if not - (cl_len = 0 || - (itl_len = 1 && cl_len = 1 && - is_non_informative leftno - (let _,_,x = List.hd cl in x))) - then - raise (TypeCheckerFailure (lazy - ("Sort elimination not allowed"))); - | _,_ -> ()) - | _,_ -> () - in - aux - in typeof_aux context term +and check_allowed_sort_elimination ~subst ~metasenv r = + let mkapp he arg = + match he with + | C.Appl l -> C.Appl (l @ [arg]) + | t -> C.Appl [t;arg] in + let rec aux context ind arity1 arity2 = + let arity1 = R.whd ~subst context arity1 in + let arity2 = R.whd ~subst context arity2 in + match arity1,arity2 with + | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> + if not (R.are_convertible ~metasenv ~subst context so1 so2) then + raise (TypeCheckerFailure (lazy (Printf.sprintf + "In outtype: expected %s, found %s" + (PP.ppterm ~subst ~metasenv ~context so1) + (PP.ppterm ~subst ~metasenv ~context so2) + ))); + aux ((name, C.Decl so1)::context) + (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 + | C.Sort _, C.Prod (name,so,ta) -> + if not (R.are_convertible ~metasenv ~subst context so ind) then + raise (TypeCheckerFailure (lazy (Printf.sprintf + "In outtype: expected %s, found %s" + (PP.ppterm ~subst ~metasenv ~context ind) + (PP.ppterm ~subst ~metasenv ~context so) + ))); + (match arity1, R.whd ~subst ((name,C.Decl so)::context) ta with + | (C.Sort C.Type _, C.Sort _) + | (C.Sort C.Prop, C.Sort C.Prop) -> () + | (C.Sort C.Prop, C.Sort C.Type _) -> + (* TODO: we should pass all these parameters since we + * have them already *) + let _,leftno,itl,_,i = E.get_checked_indtys r in + let itl_len = List.length itl in + let _,itname,ittype,cl = List.nth itl i in + let cl_len = List.length cl in + (* is it a singleton, non recursive and non informative + definition or an empty one? *) + if not + (cl_len = 0 || + (itl_len = 1 && cl_len = 1 && + let _,_,constrty = List.hd cl in + is_non_recursive_singleton + ~subst r itname ittype constrty && + is_non_informative ~metasenv ~subst leftno constrty)) + then + raise (TypeCheckerFailure (lazy + ("Sort elimination not allowed"))); + | _,_ -> ()) + | _,_ -> () + in + aux + and eat_prods ~subst ~metasenv context he ty_he args_with_ty = let rec aux ty_he = function | [] -> ty_he | (arg, ty_arg)::tl -> match R.whd ~subst context ty_he with | C.Prod (_,s,t) -> - if R.are_convertible ~subst get_relevance context ty_arg s then + if R.are_convertible ~metasenv ~subst context ty_arg s then aux (S.subst ~avoid_beta_redexes:true arg t) tl else raise (TypeCheckerFailure (lazy (Printf.sprintf - ("Appl: wrong application of %s: the parameter %s has type"^^ + ("Appl: wrong application of %s: the argument %s has type"^^ "\n%s\nbut it should have type \n%s\nContext:\n%s\n") (PP.ppterm ~subst ~metasenv ~context he) (PP.ppterm ~subst ~metasenv ~context arg) @@ -681,14 +702,28 @@ and eat_prods ~subst ~metasenv context he ty_he args_with_ty = in aux ty_he args_with_ty -and is_non_informative paramsno c = +and is_non_recursive_singleton ~subst (Ref.Ref (uri,_)) iname ity cty = + let ctx = [iname, C.Decl ity] in + let cty = debruijn uri 1 [] ~subst cty in + let len = List.length ctx in + let rec aux ctx n nn t = + match R.whd ~subst ctx t with + | C.Prod (name, src, tgt) -> + does_not_occur ~subst ctx n nn src && + aux ((name, C.Decl src) :: ctx) (n+1) (nn+1) tgt + | C.Rel k | C.Appl (C.Rel k :: _) when k = nn -> true + | _ -> assert false + in + aux ctx (len-1) len cty + +and is_non_informative ~metasenv ~subst paramsno c = let rec aux context c = - match R.whd context c with + match R.whd ~subst context c with | C.Prod (n,so,de) -> - let s = typeof ~metasenv:[] ~subst:[] context so in + let s = typeof ~metasenv ~subst context so in s = C.Sort C.Prop && aux ((n,(C.Decl so))::context) de | _ -> true in - let context',dx = split_prods ~subst:[] [] paramsno c in + let context',dx = NCicReduction.split_prods ~subst [] paramsno c in aux context' dx and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = @@ -700,13 +735,15 @@ and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = ignore (List.fold_right (fun (it_relev,_,ty,cl) i -> - let context,ty_sort = split_prods ~subst [] ~-1 ty in + let context,ty_sort = NCicReduction.split_prods ~subst [] ~-1 ty in let sx_context_ty_rev,_ = HExtlib.split_nth leftno (List.rev context) in List.iter (fun (k_relev,_,te) -> - let _,k_relev = HExtlib.split_nth leftno k_relev in - let te = debruijn uri len [] te in - let context,te = split_prods ~subst tys leftno te in + let k_relev = + try snd (HExtlib.split_nth leftno k_relev) + with Failure _ -> k_relev in + let te = debruijn uri len [] ~subst te in + let context,te = NCicReduction.split_prods ~subst tys leftno te in let _,chopped_context_rev = HExtlib.split_nth (List.length tys) (List.rev context) in let sx_context_te_rev,_ = @@ -716,12 +753,11 @@ and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = (fun context item1 item2 -> let convertible = match item1,item2 with - (n1,C.Decl ty1),(n2,C.Decl ty2) -> - n1 = n2 && R.are_convertible ~subst get_relevance context ty1 ty2 - | (n1,C.Def (bo1,ty1)),(n2,C.Def (bo2,ty2)) -> - n1 = n2 - && R.are_convertible ~subst get_relevance context ty1 ty2 - && R.are_convertible ~subst get_relevance context bo1 bo2 + (_,C.Decl ty1),(_,C.Decl ty2) -> + R.are_convertible ~metasenv ~subst context ty1 ty2 + | (_,C.Def (bo1,ty1)),(_,C.Def (bo2,ty2)) -> + R.are_convertible ~metasenv ~subst context ty1 ty2 && + R.are_convertible ~metasenv ~subst context bo1 bo2 | _,_ -> false in if not convertible then @@ -731,7 +767,7 @@ and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = else item1::context ) [] sx_context_ty_rev sx_context_te_rev) - with Invalid_argument _ -> assert false); + with Invalid_argument "List.fold_left2" -> assert false); let con_sort = typeof ~subst ~metasenv context te in (match R.whd ~subst context con_sort, R.whd ~subst [] ty_sort with (C.Sort (C.Type u1) as s1), (C.Sort (C.Type u2) as s2) -> @@ -837,7 +873,7 @@ and guarded_by_destructors r_uri r_len ~subst ~metasenv context recfuns t = List.split (List.map (fun (_,name,_,ty,bo) -> (name, C.Decl ty), bo) fl) in let fl_len = List.length fl in - let bos = List.map (debruijn uri fl_len context) bos in + let bos = List.map (debruijn uri fl_len context ~subst) bos in let j = List.fold_left min max_int (List.map (fun (_,_,i,_,_)->i) fl) in let ctx_len = List.length context in (* we may look for fixed params not only up to j ... *) @@ -939,8 +975,7 @@ and guarded_by_constructors ~subst ~metasenv context t indURI indlen nn = ("Too many args for constructor: " ^ String.concat " " (List.map (fun x-> PP.ppterm ~subst ~metasenv ~context x) args)))) in - let left, args = HExtlib.split_nth paramsno tl in - List.for_all (does_not_occur ~subst context n nn) left && + let _, args = HExtlib.split_nth paramsno tl in analyse_instantiated_type rec_params args | C.Appl ((C.Match (_,out,te,pl))::_) | C.Match (_,out,te,pl) as t -> @@ -949,6 +984,9 @@ and guarded_by_constructors ~subst ~metasenv context t indURI indlen nn = does_not_occur ~subst context n nn out && does_not_occur ~subst context n nn te && List.for_all (aux context n nn h) pl +(* IMPOSSIBLE unsless we allow to pass cofix to other fix/cofix as we do for + higher order fix in g_b_destructors. + | C.Const (Ref.Ref (u,(Ref.Fix _| Ref.CoFix _)) as ref) | C.Appl(C.Const (Ref.Ref(u,(Ref.Fix _| Ref.CoFix _)) as ref) :: _) as t -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in @@ -960,13 +998,14 @@ and guarded_by_constructors ~subst ~metasenv context t indURI indlen nn = (fun (_,_,_,_,bo) -> aux (context@tys) n nn h (debruijn u len context bo)) fl +*) | C.Const _ | C.Appl _ as t -> does_not_occur ~subst context n nn t in aux context 0 nn false t and recursive_args ~subst ~metasenv context n nn te = - match R.whd context te with + match R.whd ~subst context te with | C.Rel _ | C.Appl _ | C.Const _ -> [] | C.Prod (name,so,de) -> (not (does_not_occur ~subst context n nn so)) :: @@ -1047,50 +1086,48 @@ and type_of_constant ((Ref.Ref (uri,_)) as ref) = let _,_,recno1,arity,_ = List.nth fl i in if h1 <> h2 || recno1 <> recno2 then error (); arity - | (_,_,_,_,C.Constant (_,_,_,ty,_)), Ref.Ref (_,Ref.Decl) -> ty - | (_,h1,_,_,C.Constant (_,_,_,ty,_)), Ref.Ref (_,Ref.Def h2) -> + | (_,_,_,_,C.Constant (_,_,None,ty,_)), Ref.Ref (_,Ref.Decl) -> ty + | (_,h1,_,_,C.Constant (_,_,Some _,ty,_)), Ref.Ref (_,Ref.Def h2) -> if h1 <> h2 then error (); ty - | _ -> raise (AssertFailure (lazy "type_of_constant: environment/reference")) + | _ -> + raise (AssertFailure + (lazy ("type_of_constant: environment/reference: " ^ + Ref.string_of_reference ref))) -and get_relevance ~subst context te args = - match te with - | C.Const r when List.length (E.get_relevance r) >= List.length args -> - let relevance = E.get_relevance r in - (match r with - | Ref.Ref (_,Ref.Con (_,_,lno)) -> - let _,relevance = HExtlib.split_nth lno relevance in - HExtlib.mk_list false lno @ relevance - | _ -> relevance) - | t -> - let ty = typeof ~subst ~metasenv:[] context t in - let rec aux context ty = function - | [] -> [] - | arg::tl -> match R.whd ~subst context ty with - | C.Prod (name,so,de) -> - let sort = typeof ~subst ~metasenv:[] context so in - let new_ty = S.subst ~avoid_beta_redexes:true arg de in - (match R.whd ~subst context sort with - | C.Sort C.Prop -> - false::(aux ((name,(C.Decl so))::context) new_ty tl) - | C.Sort _ - | C.Meta _ -> true::(aux ((name,(C.Decl so))::context) de tl) - | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf - "Prod: the type %s of the source of %s is not a sort" - (PP.ppterm ~subst ~metasenv:[] ~context sort) - (PP.ppterm ~subst ~metasenv:[] ~context so))))) - | _ -> - raise - (TypeCheckerFailure - (lazy (Printf.sprintf - "Appl: %s is not a function, it cannot be applied" - (PP.ppterm ~subst ~metasenv:[] ~context - (let res = List.length tl in - let eaten = List.length args - res in - (C.Appl - (t::fst - (HExtlib.split_nth eaten args)))))))) - in aux context ty args +and get_relevance ~metasenv ~subst context t args = + let ty = typeof ~subst ~metasenv context t in + let rec aux context ty = function + | [] -> [] + | arg::tl -> match R.whd ~subst context ty with + | C.Prod (_,so,de) -> + let sort = typeof ~subst ~metasenv context so in + let new_ty = S.subst ~avoid_beta_redexes:true arg de in + (*prerr_endline ("so: " ^ PP.ppterm ~subst ~metasenv:[] + ~context so); + prerr_endline ("sort: " ^ PP.ppterm ~subst ~metasenv:[] + ~context sort);*) + (match R.whd ~subst context sort with + | C.Sort C.Prop -> + false::(aux context new_ty tl) + | C.Sort _ + | C.Meta _ -> true::(aux context new_ty tl) + | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf + "Prod: the type %s of the source of %s is not a sort" + (PP.ppterm ~subst ~metasenv ~context sort) + (PP.ppterm ~subst ~metasenv ~context so))))) + | _ -> + raise + (TypeCheckerFailure + (lazy (Printf.sprintf + "Appl: %s is not a function, it cannot be applied" + (PP.ppterm ~subst ~metasenv ~context + (let res = List.length tl in + let eaten = List.length args - res in + (C.Appl + (t::fst + (HExtlib.split_nth eaten args)))))))) + in aux context ty args ;; let typecheck_context ~metasenv ~subst context = @@ -1103,7 +1140,7 @@ let typecheck_context ~metasenv ~subst context = | name,C.Def (te,ty) -> ignore (typeof ~metasenv ~subst:[] context ty); let ty' = typeof ~metasenv ~subst:[] context te in - if not (R.are_convertible ~subst get_relevance context ty' ty) then + if not (R.are_convertible ~metasenv ~subst context ty' ty) then raise (AssertFailure (lazy (Printf.sprintf ( "the type of the definiens for %s in the context is not "^^ "convertible with the declared one.\n"^^ @@ -1141,7 +1178,7 @@ let typecheck_subst ~metasenv subst = typecheck_context ~metasenv ~subst context; ignore (typeof ~metasenv ~subst context ty); let ty' = typeof ~metasenv ~subst context bo in - if not (R.are_convertible ~subst get_relevance context ty' ty) then + if not (R.are_convertible ~metasenv ~subst context ty' ty) then raise (AssertFailure (lazy (Printf.sprintf ( "the type of the definiens for %d in the substitution is not "^^ "convertible with the declared one.\n"^^ @@ -1153,45 +1190,59 @@ let typecheck_subst ~metasenv subst = ) [] subst) ;; -let check_rel1_irrelevant ~metasenv ~subst context = fun _ -> ();; -(* let shift e (k, context) = k+1,e::context in - let rec aux (evil, context as k) () t = - match R.whd ~subst context t with - | C.Rel i when i = evil -> (* - raise (TypeCheckerFailure (lazy (Printf.sprintf - "Argument %s declared as irrelevante is used in a relevant position" - (PP.ppterm ~subst ~metasenv ~context (C.Rel i))))) *) () - | C.Meta _ -> () - | C.Lambda (name,so,tgt) -> - (* checking so is not needed since the implicit version of CC - * has untyped lambdas (curry style), see Barras and Bernardo *) - aux (shift (name,C.Decl so) k) () tgt - | C.Appl (C.Const ref::args) -> - let relevance = NCicEnvironment.get_relevance ref in - HExtlib.list_iter_default2 - (fun t -> function false -> () | _ -> aux k () t) - args true relevance - | C.Match (_, _, _, []) -> () - | C.Match (ref, _, t, [p]) -> - aux k () p; - let _,lno,itl,_,_ = E.get_checked_indtys ref in - let _,_,_,cl = List.hd itl in - let _,_,c = List.hd cl in - if not (is_non_informative lno c) then aux k () t - | C.Match (_, _, t, pl) -> List.iter (aux k ()) (t::pl) - | t -> U.fold shift k aux () t - in - aux (1, context) () *) +let height_of_term tl = + let h = ref 0 in + let get_height (NReference.Ref (uri,_)) = + let _,height,_,_,_ = NCicEnvironment.get_checked_obj uri in + height in + let rec aux = + function + NCic.Meta (_,(_,NCic.Ctx l)) -> List.iter aux l + | NCic.Meta _ -> () + | NCic.Rel _ + | NCic.Sort _ -> () + | NCic.Implicit _ -> assert false + | NCic.Const nref -> h := max !h (get_height nref) + | NCic.Prod (_,t1,t2) + | NCic.Lambda (_,t1,t2) -> aux t1; aux t2 + | NCic.LetIn (_,s,ty,t) -> aux s; aux ty; aux t + | NCic.Appl l -> List.iter aux l + | NCic.Match (_,outty,t,pl) -> aux outty; aux t; List.iter aux pl + in + List.iter aux tl; + 1 + !h +;; + +let height_of_obj_kind uri ~subst = + function + NCic.Inductive _ + | NCic.Constant (_,_,None,_,_) + | NCic.Fixpoint (false,_,_) -> 0 + | NCic.Fixpoint (true,ifl,_) -> + let iflno = List.length ifl in + height_of_term + (List.fold_left + (fun l (_,_,_,ty,bo) -> + let bo = debruijn uri iflno [] ~subst bo in + ty::bo::l + ) [] ifl) + | NCic.Constant (_,_,Some bo,ty,_) -> height_of_term [bo;ty] +;; -let typecheck_obj (uri,_height,metasenv,subst,kind) = - (* height is not checked since it is only used to implement an optimization *) +let typecheck_obj (uri,height,metasenv,subst,kind) = +(*height must be checked since it is not only an optimization during reduction*) + let iheight = height_of_obj_kind uri ~subst kind in + if height <> iheight then + raise (TypeCheckerFailure (lazy (Printf.sprintf + "the declared object height (%d) is not the inferred one (%d)" + height iheight))); typecheck_metasenv metasenv; typecheck_subst ~metasenv subst; match kind with | C.Constant (relevance,_,Some te,ty,_) -> let _ = typeof ~subst ~metasenv [] ty in let ty_te = typeof ~subst ~metasenv [] te in - if not (R.are_convertible ~subst get_relevance [] ty_te ty) then + if not (R.are_convertible ~metasenv ~subst [] ty_te ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf ( "the type of the body is not convertible with the declared one.\n"^^ "inferred type:\n%s\nexpected type:\n%s") @@ -1217,13 +1268,13 @@ let typecheck_obj (uri,_height,metasenv,subst,kind) = let dfl, kl = List.split (List.map2 (fun (_,_,_,_,bo) rno -> - let dbo = debruijn uri len [] bo in + let dbo = debruijn uri len [] ~subst bo in dbo, Evil rno) fl kl) in List.iter2 (fun (_,_,x,ty,_) bo -> let ty_bo = typeof ~subst ~metasenv types bo in - if not (R.are_convertible ~subst get_relevance types ty_bo ty) + if not (R.are_convertible ~metasenv ~subst types ty_bo ty) then raise (TypeCheckerFailure (lazy ("(Co)Fix: ill-typed bodies"))) else if inductive then begin @@ -1299,4 +1350,33 @@ E.set_typecheck_obj typecheck_obj obj) ;; +let _ = NCicReduction.set_get_relevance get_relevance;; + + +let indent = ref 0;; +let debug = true;; +let logger = + let do_indent () = String.make !indent ' ' in + (function + | `Start_type_checking s -> + if debug then + prerr_endline (do_indent () ^ "Start: " ^ NUri.string_of_uri s); + incr indent + | `Type_checking_completed s -> + decr indent; + if debug then + prerr_endline (do_indent () ^ "End: " ^ NUri.string_of_uri s) + | `Type_checking_interrupted s -> + decr indent; + if debug then + prerr_endline (do_indent () ^ "Break: " ^ NUri.string_of_uri s) + | `Type_checking_failed s -> + decr indent; + if debug then + prerr_endline (do_indent () ^ "Fail: " ^ NUri.string_of_uri s) + | `Trust_obj s -> + if debug then + prerr_endline (do_indent () ^ "Trust: " ^ NUri.string_of_uri s)) +;; +(* let _ = set_logger logger ;; *) (* EOF *)