X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Fng_kernel%2FnCicTypeChecker.ml;h=ceb14d17c4145cd432ee4fc3290bb06c8fb1b082;hb=08e9d02504942642a917c0d3e4b4795e65172d89;hp=c74b50edfd851b7d5e26c45d7febde0168a30627;hpb=013dba0f27e3e834bb2297bcd89a570df6372ef2;p=helm.git diff --git a/helm/software/components/ng_kernel/nCicTypeChecker.ml b/helm/software/components/ng_kernel/nCicTypeChecker.ml index c74b50edf..ceb14d17c 100644 --- a/helm/software/components/ng_kernel/nCicTypeChecker.ml +++ b/helm/software/components/ng_kernel/nCicTypeChecker.ml @@ -11,279 +11,25 @@ (* $Id: nCicReduction.ml 8250 2008-03-25 17:56:20Z tassi $ *) -exception TypeCheckerFailure of string Lazy.t -exception AssertFailure of string Lazy.t - -(* $Id: cicTypeChecker.ml 8213 2008-03-13 18:48:26Z sacerdot $ *) +(* web interface stuff *) -(* -let debrujin_constructor ?(cb=fun _ _ -> ()) uri number_of_types = - let rec aux k t = - let module C = Cic in - let res = - match t with - C.Rel n as t when n <= k -> t - | C.Rel _ -> - raise (TypeCheckerFailure (lazy "unbound variable found in constructor type")) - | C.Var (uri,exp_named_subst) -> - let exp_named_subst' = - List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst - in - C.Var (uri,exp_named_subst') - | C.Meta (i,l) -> - let l' = List.map (function None -> None | Some t -> Some (aux k t)) l in - C.Meta (i,l') - | C.Sort _ - | C.Implicit _ as t -> t - | C.Cast (te,ty) -> C.Cast (aux k te, aux k ty) - | C.Prod (n,s,t) -> C.Prod (n, aux k s, aux (k+1) t) - | C.Lambda (n,s,t) -> C.Lambda (n, aux k s, aux (k+1) t) - | C.LetIn (n,s,ty,t) -> C.LetIn (n, aux k s, aux k ty, aux (k+1) t) - | C.Appl l -> C.Appl (List.map (aux k) l) - | C.Const (uri,exp_named_subst) -> - let exp_named_subst' = - List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst - in - C.Const (uri,exp_named_subst') - | C.MutInd (uri',tyno,exp_named_subst) when UriManager.eq uri uri' -> - if exp_named_subst != [] then - raise (TypeCheckerFailure - (lazy ("non-empty explicit named substitution is applied to "^ - "a mutual inductive type which is being defined"))) ; - C.Rel (k + number_of_types - tyno) ; - | C.MutInd (uri',tyno,exp_named_subst) -> - let exp_named_subst' = - List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst - in - C.MutInd (uri',tyno,exp_named_subst') - | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> - let exp_named_subst' = - List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst - in - C.MutConstruct (uri,tyno,consno,exp_named_subst') - | C.MutCase (sp,i,outty,t,pl) -> - C.MutCase (sp, i, aux k outty, aux k t, - List.map (aux k) pl) - | C.Fix (i, fl) -> - let len = List.length fl in - let liftedfl = - List.map - (fun (name, i, ty, bo) -> (name, i, aux k ty, aux (k+len) bo)) - fl - in - C.Fix (i, liftedfl) - | C.CoFix (i, fl) -> - let len = List.length fl in - let liftedfl = - List.map - (fun (name, ty, bo) -> (name, aux k ty, aux (k+len) bo)) - fl - in - C.CoFix (i, liftedfl) - in - cb t res; - res - in - aux 0 +let logger = + ref (function (`Start_type_checking _|`Type_checking_completed _) -> ()) ;; -exception CicEnvironmentError;; +let set_logger f = logger := f;; -let rec type_of_constant ~logger uri ugraph = - let module C = Cic in - let module R = CicReduction in - let module U = UriManager in - let cobj,ugraph = - match CicEnvironment.is_type_checked ~trust:true ugraph uri with - CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' - | CicEnvironment.UncheckedObj uobj -> - logger#log (`Start_type_checking uri) ; - (* let's typecheck the uncooked obj *) - -(**************************************************************** - TASSI: FIXME qui e' inutile ricordarselo, - tanto poi lo richiediamo alla cache che da quello su disco -*****************************************************************) +exception TypeCheckerFailure of string Lazy.t +exception AssertFailure of string Lazy.t - let ugraph_dust = - (match uobj with - C.Constant (_,Some te,ty,_,_) -> - let _,ugraph = type_of ~logger ty ugraph in - let type_of_te,ugraph' = type_of ~logger te ugraph in - let b',ugraph'' = (R.are_convertible [] type_of_te ty ugraph') in - if not b' then - raise (TypeCheckerFailure (lazy (sprintf - "the constant %s is not well typed because the type %s of the body is not convertible to the declared type %s" - (U.string_of_uri uri) (CicPp.ppterm type_of_te) - (CicPp.ppterm ty)))) - else - ugraph' - | C.Constant (_,None,ty,_,_) -> - (* only to check that ty is well-typed *) - let _,ugraph' = type_of ~logger ty ugraph in - ugraph' - | C.CurrentProof (_,conjs,te,ty,_,_) -> - let _,ugraph1 = - List.fold_left - (fun (metasenv,ugraph) ((_,context,ty) as conj) -> - let _,ugraph' = - type_of_aux' ~logger metasenv context ty ugraph - in - (metasenv @ [conj],ugraph') - ) ([],ugraph) conjs - in - let _,ugraph2 = type_of_aux' ~logger conjs [] ty ugraph1 in - let type_of_te,ugraph3 = - type_of_aux' ~logger conjs [] te ugraph2 - in - let b,ugraph4 = (R.are_convertible [] type_of_te ty ugraph3) in - if not b then - raise (TypeCheckerFailure (lazy (sprintf - "the current proof %s is not well typed because the type %s of the body is not convertible to the declared type %s" - (U.string_of_uri uri) (CicPp.ppterm type_of_te) - (CicPp.ppterm ty)))) - else - ugraph4 - | _ -> - raise - (TypeCheckerFailure (lazy ("Unknown constant:" ^ U.string_of_uri uri)))) - in - try - CicEnvironment.set_type_checking_info uri; - logger#log (`Type_checking_completed uri) ; - match CicEnvironment.is_type_checked ~trust:false ugraph uri with - CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' - | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError - with Invalid_argument s -> - (*debug_print (lazy s);*) - uobj,ugraph_dust - in - match cobj,ugraph with - (C.Constant (_,_,ty,_,_)),g -> ty,g - | (C.CurrentProof (_,_,_,ty,_,_)),g -> ty,g - | _ -> - raise (TypeCheckerFailure (lazy ("Unknown constant:" ^ U.string_of_uri uri))) +let shift_k e (c,rf,x,safes) = + e::c,List.map (fun (k,v) -> k+1,v) rf,x+1,List.map ((+)1) safes +;; -and type_of_variable ~logger uri ugraph = - let module C = Cic in - let module R = CicReduction in - let module U = UriManager in - (* 0 because a variable is never cooked => no partial cooking at one level *) - match CicEnvironment.is_type_checked ~trust:true ugraph uri with - CicEnvironment.CheckedObj ((C.Variable (_,_,ty,_,_)),ugraph') -> ty,ugraph' - | CicEnvironment.UncheckedObj (C.Variable (_,bo,ty,_,_)) -> - logger#log (`Start_type_checking uri) ; - (* only to check that ty is well-typed *) - let _,ugraph1 = type_of ~logger ty ugraph in - let ugraph2 = - (match bo with - None -> ugraph - | Some bo -> - let ty_bo,ugraph' = type_of ~logger bo ugraph1 in - let b,ugraph'' = (R.are_convertible [] ty_bo ty ugraph') in - if not b then - raise (TypeCheckerFailure - (lazy ("Unknown variable:" ^ U.string_of_uri uri))) - else - ugraph'') - in - (try - CicEnvironment.set_type_checking_info uri ; - logger#log (`Type_checking_completed uri) ; - match CicEnvironment.is_type_checked ~trust:false ugraph uri with - CicEnvironment.CheckedObj ((C.Variable (_,_,ty,_,_)),ugraph') -> - ty,ugraph' - | CicEnvironment.CheckedObj _ - | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError - with Invalid_argument s -> - (*debug_print (lazy s);*) - ty,ugraph2) - | _ -> - raise (TypeCheckerFailure (lazy ("Unknown variable:" ^ U.string_of_uri uri))) +(* $Id: cicTypeChecker.ml 8213 2008-03-13 18:48:26Z sacerdot $ *) -and does_not_occur ?(subst=[]) context n nn te = - let module C = Cic in - match te with - C.Rel m when m > n && m <= nn -> false - | C.Rel m -> - (try - (match List.nth context (m-1) with - Some (_,C.Def (bo,_)) -> - does_not_occur ~subst context n nn (CicSubstitution.lift m bo) - | _ -> true) - with - Failure _ -> assert false) - | C.Sort _ - | C.Implicit _ -> true - | C.Meta (_,l) -> - List.fold_right - (fun x i -> - match x with - None -> i - | Some x -> i && does_not_occur ~subst context n nn x) l true && - (try - let (canonical_context,term,ty) = CicUtil.lookup_subst n subst in - does_not_occur ~subst context n nn (CicSubstitution.subst_meta l term) - with - CicUtil.Subst_not_found _ -> true) - | C.Cast (te,ty) -> - does_not_occur ~subst context n nn te && does_not_occur ~subst context n nn ty - | C.Prod (name,so,dest) -> - does_not_occur ~subst context n nn so && - does_not_occur ~subst ((Some (name,(C.Decl so)))::context) (n + 1) - (nn + 1) dest - | C.Lambda (name,so,dest) -> - does_not_occur ~subst context n nn so && - does_not_occur ~subst ((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) - dest - | C.LetIn (name,so,ty,dest) -> - does_not_occur ~subst context n nn so && - does_not_occur ~subst context n nn ty && - does_not_occur ~subst ((Some (name,(C.Def (so,ty))))::context) - (n + 1) (nn + 1) dest - | C.Appl l -> - List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) l true - | C.Var (_,exp_named_subst) - | C.Const (_,exp_named_subst) - | C.MutInd (_,_,exp_named_subst) - | C.MutConstruct (_,_,_,exp_named_subst) -> - List.fold_right (fun (_,x) i -> i && does_not_occur ~subst context n nn x) - exp_named_subst true - | C.MutCase (_,_,out,te,pl) -> - does_not_occur ~subst context n nn out && does_not_occur ~subst context n nn te && - List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) pl true - | C.Fix (_,fl) -> - let len = List.length fl in - let n_plus_len = n + len in - let nn_plus_len = nn + len in - let tys,_ = - List.fold_left - (fun (types,len) (n,_,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - in - List.fold_right - (fun (_,_,ty,bo) i -> - i && does_not_occur ~subst context n nn ty && - does_not_occur ~subst (tys @ context) n_plus_len nn_plus_len bo - ) fl true - | C.CoFix (_,fl) -> - let len = List.length fl in - let n_plus_len = n + len in - let nn_plus_len = nn + len in - let tys,_ = - List.fold_left - (fun (types,len) (n,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - in - List.fold_right - (fun (_,ty,bo) i -> - i && does_not_occur ~subst context n nn ty && - does_not_occur ~subst (tys @ context) n_plus_len nn_plus_len bo - ) fl true +(* +exception CicEnvironmentError;; (*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) (*CSC questa funzione e' simile alla are_all_occurrences_positive, ma fa *) @@ -368,8 +114,8 @@ and weakly_positive context n nn uri te = (n + 1) (nn + 1) uri dest | C.Prod (name,source,dest) -> does_not_occur context n nn - (subst_inductive_type_with_dummy_mutind source)&& - weakly_positive ((Some (name,(C.Decl source)))::context) + (subst_inductive_type_with_dummy_mutind source)&& + weakly_positive ((Some (name,(C.Decl source)))::context) (n + 1) (nn + 1) uri dest | _ -> raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) @@ -402,16 +148,16 @@ and strictly_positive context n nn te = List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true | C.Appl ((C.MutInd (uri,i,exp_named_subst))::tl) -> let (ok,paramsno,ity,cl,name) = - let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with + let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with C.InductiveDefinition (tl,_,paramsno,_) -> - let (name,_,ity,cl) = List.nth tl i in + let (name,_,ity,cl) = List.nth tl i in (List.length tl = 1, paramsno, ity, cl, name) (* (true, paramsno, ity, cl, name) *) | _ -> - raise - (TypeCheckerFailure - (lazy ("Unknown inductive type:" ^ U.string_of_uri uri))) + raise + (TypeCheckerFailure + (lazy ("Unknown inductive type:" ^ U.string_of_uri uri))) in let (params,arguments) = split tl paramsno in let lifted_params = List.map (CicSubstitution.lift 1) params in @@ -516,32 +262,32 @@ and typecheck_mutual_inductive_defs ~logger uri (itl,_,indparamsno) ugraph = let _,ugraph2 = List.fold_right (fun (_,_,_,cl) (i,ugraph) -> - let ugraph'' = + let ugraph'' = List.fold_left (fun ugraph (name,te) -> - let debrujinedte = debrujin_constructor uri len te in + let debruijnedte = debruijn uri len te in let augmented_term = - List.fold_right - (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) - itl debrujinedte + List.fold_right + (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) + itl debruijnedte in let _,ugraph' = type_of ~logger augmented_term ugraph in (* let's check also the positivity conditions *) if - not - (are_all_occurrences_positive tys uri indparamsno i 0 len - debrujinedte) + not + (are_all_occurrences_positive tys uri indparamsno i 0 len + debruijnedte) then begin prerr_endline (UriManager.string_of_uri uri); prerr_endline (string_of_int (List.length tys)); - raise - (TypeCheckerFailure + raise + (TypeCheckerFailure (lazy ("Non positive occurence in " ^ U.string_of_uri uri))) end else - ugraph' + ugraph' ) ugraph cl in - (i + 1),ugraph'' + (i + 1),ugraph'' ) itl (1,ugrap1) in ugraph2 @@ -551,562 +297,11 @@ and typecheck_mutual_inductive_defs ~logger uri (itl,_,indparamsno) ugraph = and check_mutual_inductive_defs uri obj ugraph = match obj with Cic.InductiveDefinition (itl, params, indparamsno, _) -> - typecheck_mutual_inductive_defs uri (itl,params,indparamsno) ugraph + typecheck_mutual_inductive_defs uri (itl,params,indparamsno) ugraph | _ -> - raise (TypeCheckerFailure ( - lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - -and type_of_mutual_inductive_defs ~logger uri i ugraph = - let module C = Cic in - let module R = CicReduction in - let module U = UriManager in - let cobj,ugraph1 = - match CicEnvironment.is_type_checked ~trust:true ugraph uri with - CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' - | CicEnvironment.UncheckedObj uobj -> - logger#log (`Start_type_checking uri) ; - let ugraph1_dust = - check_mutual_inductive_defs ~logger uri uobj ugraph - in - (* TASSI: FIXME: check ugraph1 == ugraph ritornato da env *) - try - CicEnvironment.set_type_checking_info uri ; - logger#log (`Type_checking_completed uri) ; - (match CicEnvironment.is_type_checked ~trust:false ugraph uri with - CicEnvironment.CheckedObj (cobj,ugraph') -> (cobj,ugraph') - | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError - ) - with - Invalid_argument s -> - (*debug_print (lazy s);*) - uobj,ugraph1_dust - in - match cobj with - C.InductiveDefinition (dl,_,_,_) -> - let (_,_,arity,_) = List.nth dl i in - arity,ugraph1 - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ U.string_of_uri uri))) - -and type_of_mutual_inductive_constr ~logger uri i j ugraph = - let module C = Cic in - let module R = CicReduction in - let module U = UriManager in - let cobj,ugraph1 = - match CicEnvironment.is_type_checked ~trust:true ugraph uri with - CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' - | CicEnvironment.UncheckedObj uobj -> - logger#log (`Start_type_checking uri) ; - let ugraph1_dust = - check_mutual_inductive_defs ~logger uri uobj ugraph - in - (* check ugraph1 validity ??? == ugraph' *) - try - CicEnvironment.set_type_checking_info uri ; - logger#log (`Type_checking_completed uri) ; - (match - CicEnvironment.is_type_checked ~trust:false ugraph uri - with - CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' - | CicEnvironment.UncheckedObj _ -> - raise CicEnvironmentError) - with - Invalid_argument s -> - (*debug_print (lazy s);*) - uobj,ugraph1_dust - in - match cobj with - C.InductiveDefinition (dl,_,_,_) -> - let (_,_,_,cl) = List.nth dl i in - let (_,ty) = List.nth cl (j-1) in - ty,ugraph1 - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) - -and recursive_args context n nn te = - let module C = Cic in - match CicReduction.whd context te with - C.Rel _ -> [] - | C.Var _ - | C.Meta _ - | C.Sort _ - | C.Implicit _ - | C.Cast _ (*CSC ??? *) -> - raise (AssertFailure (lazy "3")) (* due to type-checking *) - | C.Prod (name,so,de) -> - (not (does_not_occur context n nn so)) :: - (recursive_args ((Some (name,(C.Decl so)))::context) (n+1) (nn + 1) de) - | C.Lambda _ - | C.LetIn _ -> - raise (AssertFailure (lazy "4")) (* due to type-checking *) - | C.Appl _ -> [] - | C.Const _ -> raise (AssertFailure (lazy "5")) - | C.MutInd _ - | C.MutConstruct _ - | C.MutCase _ - | C.Fix _ - | C.CoFix _ -> raise (AssertFailure (lazy "6")) (* due to type-checking *) - -and get_new_safes ~subst context p c rl safes n nn x = - let module C = Cic in - let module U = UriManager in - let module R = CicReduction in - match (R.whd ~subst context c, R.whd ~subst context p, rl) with - (C.Prod (_,so,ta1), C.Lambda (name,_,ta2), b::tl) -> - (* we are sure that the two sources are convertible because we *) - (* have just checked this. So let's go along ... *) - let safes' = - List.map (fun x -> x + 1) safes - in - let safes'' = - if b then 1::safes' else safes' - in - get_new_safes ~subst ((Some (name,(C.Decl so)))::context) - ta2 ta1 tl safes'' (n+1) (nn+1) (x+1) - | (C.Prod _, (C.MutConstruct _ as e), _) - | (C.Prod _, (C.Rel _ as e), _) - | (C.MutInd _, e, []) - | (C.Appl _, e, []) -> (e,safes,n,nn,x,context) - | (c,p,l) -> - (* CSC: If the next exception is raised, it just means that *) - (* CSC: the proof-assistant allows to use very strange things *) - (* CSC: as a branch of a case whose type is a Prod. In *) - (* CSC: particular, this means that a new (C.Prod, x,_) case *) - (* CSC: must be considered in this match. (e.g. x = MutCase) *) - raise - (AssertFailure (lazy - (Printf.sprintf "Get New Safes: c=%s ; p=%s" - (CicPp.ppterm c) (CicPp.ppterm p)))) - -and split_prods ~subst context n te = - let module C = Cic in - let module R = CicReduction in - match (n, R.whd ~subst context te) with - (0, _) -> context,te - | (n, C.Prod (name,so,ta)) when n > 0 -> - split_prods ~subst ((Some (name,(C.Decl so)))::context) (n - 1) ta - | (_, _) -> raise (AssertFailure (lazy "8")) - -and eat_lambdas ~subst context n te = - let module C = Cic in - let module R = CicReduction in - match (n, R.whd ~subst context te) with - (0, _) -> (te, 0, context) - | (n, C.Lambda (name,so,ta)) when n > 0 -> - let (te, k, context') = - eat_lambdas ~subst ((Some (name,(C.Decl so)))::context) (n - 1) ta - in - (te, k + 1, context') - | (n, te) -> - raise (AssertFailure (lazy (sprintf "9 (%d, %s)" n (CicPp.ppterm te)))) - -(*CSC: Tutto quello che segue e' l'intuzione di luca ;-) *) -and check_is_really_smaller_arg ~subst context n nn kl x safes te = - (*CSC: forse la whd si puo' fare solo quando serve veramente. *) - (*CSC: cfr guarded_by_destructors *) - let module C = Cic in - let module U = UriManager in - match CicReduction.whd ~subst context te with - C.Rel m when List.mem m safes -> true - | C.Rel _ -> false - | C.Var _ - | C.Meta _ - | C.Sort _ - | C.Implicit _ - | C.Cast _ -(* | C.Cast (te,ty) -> - check_is_really_smaller_arg ~subst n nn kl x safes te && - check_is_really_smaller_arg ~subst n nn kl x safes ty*) -(* | C.Prod (_,so,ta) -> - check_is_really_smaller_arg ~subst n nn kl x safes so && - check_is_really_smaller_arg ~subst (n+1) (nn+1) kl (x+1) - (List.map (fun x -> x + 1) safes) ta*) - | C.Prod _ -> raise (AssertFailure (lazy "10")) - | C.Lambda (name,so,ta) -> - check_is_really_smaller_arg ~subst context n nn kl x safes so && - check_is_really_smaller_arg ~subst ((Some (name,(C.Decl so)))::context) - (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta - | C.LetIn (name,so,ty,ta) -> - check_is_really_smaller_arg ~subst context n nn kl x safes so && - check_is_really_smaller_arg ~subst context n nn kl x safes ty && - check_is_really_smaller_arg ~subst ((Some (name,(C.Def (so,ty))))::context) - (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta - | C.Appl (he::_) -> - (*CSC: sulla coda ci vogliono dei controlli? secondo noi no, ma *) - (*CSC: solo perche' non abbiamo trovato controesempi *) - check_is_really_smaller_arg ~subst context n nn kl x safes he - | C.Appl [] -> raise (AssertFailure (lazy "11")) - | C.Const _ - | C.MutInd _ -> raise (AssertFailure (lazy "12")) - | C.MutConstruct _ -> false - | C.MutCase (uri,i,outtype,term,pl) -> - (match term with - C.Rel m when List.mem m safes || m = x -> - let (lefts_and_tys,len,isinductive,paramsno,cl) = - let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (tl,_,paramsno,_) -> - let tys = - List.map - (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) tl - in - let (_,isinductive,_,cl) = List.nth tl i in - let cl' = - List.map - (fun (id,ty) -> - (id, snd (split_prods ~subst tys paramsno ty))) cl in - let lefts = - match tl with - [] -> assert false - | (_,_,ty,_)::_ -> - fst (split_prods ~subst [] paramsno ty) - in - (tys@lefts,List.length tl,isinductive,paramsno,cl') - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - in - if not isinductive then - List.fold_right - (fun p i -> - i && check_is_really_smaller_arg ~subst context n nn kl x safes p) - pl true - else - let pl_and_cl = - try - List.combine pl cl - with - Invalid_argument _ -> - raise (TypeCheckerFailure (lazy "not enough patterns")) - in - List.fold_right - (fun (p,(_,c)) i -> - let rl' = - let debrujinedte = debrujin_constructor uri len c in - recursive_args lefts_and_tys 0 len debrujinedte - in - let (e,safes',n',nn',x',context') = - get_new_safes ~subst context p c rl' safes n nn x - in - i && - check_is_really_smaller_arg ~subst context' n' nn' kl x' safes' e - ) pl_and_cl true - | C.Appl ((C.Rel m)::tl) when List.mem m safes || m = x -> - let (lefts_and_tys,len,isinductive,paramsno,cl) = - let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (tl,_,paramsno,_) -> - let (_,isinductive,_,cl) = List.nth tl i in - let tys = - List.map (fun (n,_,ty,_) -> - Some(Cic.Name n,(Cic.Decl ty))) tl - in - let cl' = - List.map - (fun (id,ty) -> - (id, snd (split_prods ~subst tys paramsno ty))) cl in - let lefts = - match tl with - [] -> assert false - | (_,_,ty,_)::_ -> - fst (split_prods ~subst [] paramsno ty) - in - (tys@lefts,List.length tl,isinductive,paramsno,cl') - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - in - if not isinductive then - List.fold_right - (fun p i -> - i && check_is_really_smaller_arg ~subst context n nn kl x safes p) - pl true - else - let pl_and_cl = - try - List.combine pl cl - with - Invalid_argument _ -> - raise (TypeCheckerFailure (lazy "not enough patterns")) - in - (*CSC: supponiamo come prima che nessun controllo sia necessario*) - (*CSC: sugli argomenti di una applicazione *) - List.fold_right - (fun (p,(_,c)) i -> - let rl' = - let debrujinedte = debrujin_constructor uri len c in - recursive_args lefts_and_tys 0 len debrujinedte - in - let (e, safes',n',nn',x',context') = - get_new_safes ~subst context p c rl' safes n nn x - in - i && - check_is_really_smaller_arg ~subst context' n' nn' kl x' safes' e - ) pl_and_cl true - | _ -> - List.fold_right - (fun p i -> - i && check_is_really_smaller_arg ~subst context n nn kl x safes p - ) pl true - ) - | C.Fix (_, fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - and x_plus_len = x + len - and tys,_ = - List.fold_left - (fun (types,len) (n,_,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - and safes' = List.map (fun x -> x + len) safes in - List.fold_right - (fun (_,_,ty,bo) i -> - i && - check_is_really_smaller_arg ~subst (tys@context) n_plus_len nn_plus_len kl - x_plus_len safes' bo - ) fl true - | C.CoFix (_, fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - and x_plus_len = x + len - and tys,_ = - List.fold_left - (fun (types,len) (n,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - and safes' = List.map (fun x -> x + len) safes in - List.fold_right - (fun (_,ty,bo) i -> - i && - check_is_really_smaller_arg ~subst (tys@context) n_plus_len nn_plus_len kl - x_plus_len safes' bo - ) fl true - -and guarded_by_destructors ~subst context n nn kl x safes = - let module C = Cic in - let module U = UriManager in - function - C.Rel m when m > n && m <= nn -> false - | C.Rel m -> - (match List.nth context (n-1) with - Some (_,C.Decl _) -> true - | Some (_,C.Def (bo,_)) -> - guarded_by_destructors ~subst context m nn kl x safes - (CicSubstitution.lift m bo) - | None -> raise (TypeCheckerFailure (lazy "Reference to deleted hypothesis")) - ) - | C.Meta _ - | C.Sort _ - | C.Implicit _ -> true - | C.Cast (te,ty) -> - guarded_by_destructors ~subst context n nn kl x safes te && - guarded_by_destructors ~subst context n nn kl x safes ty - | C.Prod (name,so,ta) -> - guarded_by_destructors ~subst context n nn kl x safes so && - guarded_by_destructors ~subst ((Some (name,(C.Decl so)))::context) - (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta - | C.Lambda (name,so,ta) -> - guarded_by_destructors ~subst context n nn kl x safes so && - guarded_by_destructors ~subst ((Some (name,(C.Decl so)))::context) - (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta - | C.LetIn (name,so,ty,ta) -> - guarded_by_destructors ~subst context n nn kl x safes so && - guarded_by_destructors ~subst context n nn kl x safes ty && - guarded_by_destructors ~subst ((Some (name,(C.Def (so,ty))))::context) - (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta - | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> - let k = List.nth kl (m - n - 1) in - if not (List.length tl > k) then false - else - List.fold_right - (fun param i -> - i && guarded_by_destructors ~subst context n nn kl x safes param - ) tl true && - check_is_really_smaller_arg ~subst context n nn kl x safes (List.nth tl k) - | C.Appl tl -> - List.fold_right - (fun t i -> i && guarded_by_destructors ~subst context n nn kl x safes t) - tl true - | C.Var (_,exp_named_subst) - | C.Const (_,exp_named_subst) - | C.MutInd (_,_,exp_named_subst) - | C.MutConstruct (_,_,_,exp_named_subst) -> - List.fold_right - (fun (_,t) i -> i && guarded_by_destructors ~subst context n nn kl x safes t) - exp_named_subst true - | C.MutCase (uri,i,outtype,term,pl) -> - (match CicReduction.whd ~subst context term with - C.Rel m when List.mem m safes || m = x -> - let (lefts_and_tys,len,isinductive,paramsno,cl) = - let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (tl,_,paramsno,_) -> - let len = List.length tl in - let (_,isinductive,_,cl) = List.nth tl i in - let tys = - List.map (fun (n,_,ty,_) -> - Some(Cic.Name n,(Cic.Decl ty))) tl - in - let cl' = - List.map - (fun (id,ty) -> - let debrujinedty = debrujin_constructor uri len ty in - (id, snd (split_prods ~subst tys paramsno ty), - snd (split_prods ~subst tys paramsno debrujinedty) - )) cl in - let lefts = - match tl with - [] -> assert false - | (_,_,ty,_)::_ -> - fst (split_prods ~subst [] paramsno ty) - in - (tys@lefts,len,isinductive,paramsno,cl') - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - in - if not isinductive then - guarded_by_destructors ~subst context n nn kl x safes outtype && - guarded_by_destructors ~subst context n nn kl x safes term && - (*CSC: manca ??? il controllo sul tipo di term? *) - List.fold_right - (fun p i -> - i && guarded_by_destructors ~subst context n nn kl x safes p) - pl true - else - let pl_and_cl = - try - List.combine pl cl - with - Invalid_argument _ -> - raise (TypeCheckerFailure (lazy "not enough patterns")) - in - guarded_by_destructors ~subst context n nn kl x safes outtype && - (*CSC: manca ??? il controllo sul tipo di term? *) - List.fold_right - (fun (p,(_,c,brujinedc)) i -> - let rl' = recursive_args lefts_and_tys 0 len brujinedc in - let (e,safes',n',nn',x',context') = - get_new_safes ~subst context p c rl' safes n nn x - in - i && - guarded_by_destructors ~subst context' n' nn' kl x' safes' e - ) pl_and_cl true - | C.Appl ((C.Rel m)::tl) when List.mem m safes || m = x -> - let (lefts_and_tys,len,isinductive,paramsno,cl) = - let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (tl,_,paramsno,_) -> - let (_,isinductive,_,cl) = List.nth tl i in - let tys = - List.map - (fun (n,_,ty,_) -> Some(Cic.Name n,(Cic.Decl ty))) tl - in - let cl' = - List.map - (fun (id,ty) -> - (id, snd (split_prods ~subst tys paramsno ty))) cl in - let lefts = - match tl with - [] -> assert false - | (_,_,ty,_)::_ -> - fst (split_prods ~subst [] paramsno ty) - in - (tys@lefts,List.length tl,isinductive,paramsno,cl') - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - in - if not isinductive then - guarded_by_destructors ~subst context n nn kl x safes outtype && - guarded_by_destructors ~subst context n nn kl x safes term && - (*CSC: manca ??? il controllo sul tipo di term? *) - List.fold_right - (fun p i -> - i && guarded_by_destructors ~subst context n nn kl x safes p) - pl true - else - let pl_and_cl = - try - List.combine pl cl - with - Invalid_argument _ -> - raise (TypeCheckerFailure (lazy "not enough patterns")) - in - guarded_by_destructors ~subst context n nn kl x safes outtype && - (*CSC: manca ??? il controllo sul tipo di term? *) - List.fold_right - (fun t i -> - i && guarded_by_destructors ~subst context n nn kl x safes t) - tl true && - List.fold_right - (fun (p,(_,c)) i -> - let rl' = - let debrujinedte = debrujin_constructor uri len c in - recursive_args lefts_and_tys 0 len debrujinedte - in - let (e, safes',n',nn',x',context') = - get_new_safes ~subst context p c rl' safes n nn x - in - i && - guarded_by_destructors ~subst context' n' nn' kl x' safes' e - ) pl_and_cl true - | _ -> - guarded_by_destructors ~subst context n nn kl x safes outtype && - guarded_by_destructors ~subst context n nn kl x safes term && - (*CSC: manca ??? il controllo sul tipo di term? *) - List.fold_right - (fun p i -> i && guarded_by_destructors ~subst context n nn kl x safes p) - pl true - ) - | C.Fix (_, fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - and x_plus_len = x + len - and tys,_ = - List.fold_left - (fun (types,len) (n,_,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - and safes' = List.map (fun x -> x + len) safes in - List.fold_right - (fun (_,_,ty,bo) i -> - i && guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && - guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl - x_plus_len safes' bo - ) fl true - | C.CoFix (_, fl) -> - let len = List.length fl in - let n_plus_len = n + len - and nn_plus_len = nn + len - and x_plus_len = x + len - and tys,_ = - List.fold_left - (fun (types,len) (n,ty,_) -> - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - len+1) - ) ([],0) fl - and safes' = List.map (fun x -> x + len) safes in - List.fold_right - (fun (_,ty,bo) i -> - i && - guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && - guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl - x_plus_len safes' bo - ) fl true + raise (TypeCheckerFailure ( + lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) (* the boolean h means already protected *) (* args is the list of arguments the type of the constructor that may be *) @@ -1136,11 +331,11 @@ and guarded_by_constructors ~subst context n nn h te args coInductiveTypeURI = List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) tl true | C.Appl ((C.MutConstruct (uri,i,j,exp_named_subst))::tl) -> let consty = - let obj,_ = - try - CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri - with Not_found -> assert false - in + let obj,_ = + try + CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri + with Not_found -> assert false + in match obj with C.InductiveDefinition (itl,_,_,_) -> let (_,_,_,cl) = List.nth itl i in @@ -1256,7 +451,7 @@ and guarded_by_constructors ~subst context n nn h te args coInductiveTypeURI = (fun (types,len) (n,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) - ) ([],0) fl + ) ([],0) fl in List.fold_right (fun (_,ty,bo) i -> @@ -1303,7 +498,7 @@ and guarded_by_constructors ~subst context n nn h te args coInductiveTypeURI = (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) - ) ([],0) fl + ) ([],0) fl in List.fold_right (fun (_,_,ty,bo) i -> @@ -1320,7 +515,7 @@ and guarded_by_constructors ~subst context n nn h te args coInductiveTypeURI = (fun (types,len) (n,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) - ) ([],0) fl + ) ([],0) fl in List.fold_right (fun (_,ty,bo) i -> @@ -1330,929 +525,13 @@ and guarded_by_constructors ~subst context n nn h te args coInductiveTypeURI = args coInductiveTypeURI ) fl true -and check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i - need_dummy ind arity1 arity2 ugraph = - let module C = Cic in - let module U = UriManager in - let arity1 = CicReduction.whd ~subst context arity1 in - let rec check_allowed_sort_elimination_aux ugraph context arity2 need_dummy = - match arity1, CicReduction.whd ~subst context arity2 with - (C.Prod (_,so1,de1), C.Prod (_,so2,de2)) -> - let b,ugraph1 = - CicReduction.are_convertible ~subst ~metasenv context so1 so2 ugraph in - if b then - check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i - need_dummy (C.Appl [CicSubstitution.lift 1 ind ; C.Rel 1]) de1 de2 - ugraph1 - else - false,ugraph1 - | (C.Sort _, C.Prod (name,so,ta)) when not need_dummy -> - let b,ugraph1 = - CicReduction.are_convertible ~subst ~metasenv context so ind ugraph in - if not b then - false,ugraph1 - else - check_allowed_sort_elimination_aux ugraph1 - ((Some (name,C.Decl so))::context) ta true - | (C.Sort C.Prop, C.Sort C.Prop) when need_dummy -> true,ugraph - | (C.Sort C.Prop, C.Sort C.Set) - | (C.Sort C.Prop, C.Sort C.CProp) - | (C.Sort C.Prop, C.Sort (C.Type _) ) when need_dummy -> - (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (itl,_,paramsno,_) -> - let itl_len = List.length itl in - let (name,_,ty,cl) = List.nth itl i in - let cl_len = List.length cl in - if (cl_len = 0 || (itl_len = 1 && cl_len = 1)) then - let non_informative,ugraph = - if cl_len = 0 then true,ugraph - else - is_non_informative ~logger [Some (C.Name name,C.Decl ty)] - paramsno (snd (List.nth cl 0)) ugraph - in - (* is it a singleton or empty non recursive and non informative - definition? *) - non_informative, ugraph - else - false,ugraph - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - ) - | (C.Sort C.Set, C.Sort C.Prop) when need_dummy -> true , ugraph - | (C.Sort C.CProp, C.Sort C.Prop) when need_dummy -> true , ugraph - | (C.Sort C.Set, C.Sort C.Set) when need_dummy -> true , ugraph - | (C.Sort C.Set, C.Sort C.CProp) when need_dummy -> true , ugraph - | (C.Sort C.CProp, C.Sort C.Set) when need_dummy -> true , ugraph - | (C.Sort C.CProp, C.Sort C.CProp) when need_dummy -> true , ugraph - | ((C.Sort C.Set, C.Sort (C.Type _)) | (C.Sort C.CProp, C.Sort (C.Type _))) - when need_dummy -> - (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (itl,_,paramsno,_) -> - let tys = - List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl - in - let (_,_,_,cl) = List.nth itl i in - (List.fold_right - (fun (_,x) (i,ugraph) -> - if i then - is_small ~logger tys paramsno x ugraph - else - false,ugraph - ) cl (true,ugraph)) - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - ) - | (C.Sort (C.Type _), C.Sort _) when need_dummy -> true , ugraph - | (_,_) -> false,ugraph - in - check_allowed_sort_elimination_aux ugraph context arity2 need_dummy - -and type_of_branch ~subst context argsno need_dummy outtype term constype = - let module C = Cic in - let module R = CicReduction in - match R.whd ~subst context constype with - C.MutInd (_,_,_) -> - if need_dummy then - outtype - else - C.Appl [outtype ; term] - | C.Appl (C.MutInd (_,_,_)::tl) -> - let (_,arguments) = split tl argsno - in - if need_dummy && arguments = [] then - outtype - else - C.Appl (outtype::arguments@(if need_dummy then [] else [term])) - | C.Prod (name,so,de) -> - let term' = - match CicSubstitution.lift 1 term with - C.Appl l -> C.Appl (l@[C.Rel 1]) - | t -> C.Appl [t ; C.Rel 1] - in - C.Prod (name,so,type_of_branch ~subst - ((Some (name,(C.Decl so)))::context) argsno need_dummy - (CicSubstitution.lift 1 outtype) term' de) - | _ -> raise (AssertFailure (lazy "20")) - -(* check_metasenv_consistency checks that the "canonical" context of a -metavariable is consitent - up to relocation via the relocation list l - -with the actual context *) - - -and check_metasenv_consistency ~logger ~subst metasenv context - canonical_context l ugraph -= - let module C = Cic in - let module R = CicReduction in - let module S = CicSubstitution in - let lifted_canonical_context = - let rec aux i = - function - [] -> [] - | (Some (n,C.Decl t))::tl -> - (Some (n,C.Decl (S.subst_meta l (S.lift i t))))::(aux (i+1) tl) - | None::tl -> None::(aux (i+1) tl) - | (Some (n,C.Def (t,ty)))::tl -> - (Some (n,C.Def ((S.subst_meta l (S.lift i t)),S.subst_meta l (S.lift i ty))))::(aux (i+1) tl) - in - aux 1 canonical_context - in - List.fold_left2 - (fun ugraph t ct -> - match (t,ct) with - | _,None -> ugraph - | Some t,Some (_,C.Def (ct,_)) -> - (*CSC: the following optimization is to avoid a possibly expensive - reduction that can be easily avoided and that is quite - frequent. However, this is better handled using levels to - control reduction *) - let optimized_t = - match t with - Cic.Rel n -> - (try - match List.nth context (n - 1) with - Some (_,C.Def (te,_)) -> S.lift n te - | _ -> t - with - Failure _ -> t) - | _ -> t - in -(*if t <> optimized_t && optimized_t = ct then prerr_endline "!!!!!!!!!!!!!!!" -else if t <> optimized_t then prerr_endline ("@@ " ^ CicPp.ppterm t ^ " ==> " ^ CicPp.ppterm optimized_t ^ " <==> " ^ CicPp.ppterm ct);*) - let b,ugraph1 = - R.are_convertible ~subst ~metasenv context optimized_t ct ugraph - in - if not b then - raise - (TypeCheckerFailure - (lazy (sprintf "Not well typed metavariable local context: expected a term convertible with %s, found %s" (CicPp.ppterm ct) (CicPp.ppterm t)))) - else - ugraph1 - | Some t,Some (_,C.Decl ct) -> - let type_t,ugraph1 = - type_of_aux' ~logger ~subst metasenv context t ugraph - in - let b,ugraph2 = - R.are_convertible ~subst ~metasenv context type_t ct ugraph1 - in - if not b then - raise (TypeCheckerFailure - (lazy (sprintf "Not well typed metavariable local context: expected a term of type %s, found %s of type %s" - (CicPp.ppterm ct) (CicPp.ppterm t) - (CicPp.ppterm type_t)))) - else - ugraph2 - | None, _ -> - raise (TypeCheckerFailure - (lazy ("Not well typed metavariable local context: "^ - "an hypothesis, that is not hidden, is not instantiated"))) - ) ugraph l lifted_canonical_context - - -(* - type_of_aux' is just another name (with a different scope) - for type_of_aux -*) - -and type_of_aux' ~logger ?(subst = []) metasenv context t ugraph = - let rec type_of_aux ~logger context t ugraph = - let module C = Cic in - let module R = CicReduction in - let module S = CicSubstitution in - let module U = UriManager in - match t with - C.Rel n -> - (try - match List.nth context (n - 1) with - Some (_,C.Decl t) -> S.lift n t,ugraph - | Some (_,C.Def (_,ty)) -> S.lift n ty,ugraph - | None -> raise - (TypeCheckerFailure (lazy "Reference to deleted hypothesis")) - with - Failure _ -> - raise (TypeCheckerFailure (lazy "unbound variable")) - ) - | C.Var (uri,exp_named_subst) -> - incr fdebug ; - let ugraph1 = - check_exp_named_subst ~logger ~subst context exp_named_subst ugraph - in - let ty,ugraph2 = type_of_variable ~logger uri ugraph1 in - let ty1 = CicSubstitution.subst_vars exp_named_subst ty in - decr fdebug ; - ty1,ugraph2 - | C.Meta (n,l) -> - (try - let (canonical_context,term,ty) = CicUtil.lookup_subst n subst in - let ugraph1 = - check_metasenv_consistency ~logger - ~subst metasenv context canonical_context l ugraph - in - (* assuming subst is well typed !!!!! *) - ((CicSubstitution.subst_meta l ty), ugraph1) - (* type_of_aux context (CicSubstitution.subst_meta l term) *) - with CicUtil.Subst_not_found _ -> - let (_,canonical_context,ty) = CicUtil.lookup_meta n metasenv in - let ugraph1 = - check_metasenv_consistency ~logger - ~subst metasenv context canonical_context l ugraph - in - ((CicSubstitution.subst_meta l ty),ugraph1)) - (* TASSI: CONSTRAINTS *) - | C.Sort (C.Type t) -> - let t' = CicUniv.fresh() in - (try - let ugraph1 = CicUniv.add_gt t' t ugraph in - (C.Sort (C.Type t')),ugraph1 - with - CicUniv.UniverseInconsistency msg -> raise (TypeCheckerFailure msg)) - | C.Sort s -> (C.Sort (C.Type (CicUniv.fresh ()))),ugraph - | C.Implicit _ -> raise (AssertFailure (lazy "Implicit found")) - | C.Cast (te,ty) as t -> - let _,ugraph1 = type_of_aux ~logger context ty ugraph in - let ty_te,ugraph2 = type_of_aux ~logger context te ugraph1 in - let b,ugraph3 = - R.are_convertible ~subst ~metasenv context ty_te ty ugraph2 - in - if b then - ty,ugraph3 - else - raise (TypeCheckerFailure - (lazy (sprintf "Invalid cast %s" (CicPp.ppterm t)))) - | C.Prod (name,s,t) -> - let sort1,ugraph1 = type_of_aux ~logger context s ugraph in - let sort2,ugraph2 = - type_of_aux ~logger ((Some (name,(C.Decl s)))::context) t ugraph1 - in - sort_of_prod ~subst context (name,s) (sort1,sort2) ugraph2 - | C.Lambda (n,s,t) -> - let sort1,ugraph1 = type_of_aux ~logger context s ugraph in - (match R.whd ~subst context sort1 with - C.Meta _ - | C.Sort _ -> () - | _ -> - raise - (TypeCheckerFailure (lazy (sprintf - "Not well-typed lambda-abstraction: the source %s should be a type; instead it is a term of type %s" (CicPp.ppterm s) - (CicPp.ppterm sort1)))) - ) ; - let type2,ugraph2 = - type_of_aux ~logger ((Some (n,(C.Decl s)))::context) t ugraph1 - in - (C.Prod (n,s,type2)),ugraph2 - | C.LetIn (n,s,ty,t) -> - (* only to check if s is well-typed *) - let ty',ugraph1 = type_of_aux ~logger context s ugraph in - let b,ugraph1 = - R.are_convertible ~subst ~metasenv context ty ty' ugraph1 - in - if not b then - raise - (TypeCheckerFailure - (lazy (sprintf - "The type of %s is %s but it is expected to be %s" - (CicPp.ppterm s) (CicPp.ppterm ty') (CicPp.ppterm ty)))) - else - (* The type of a LetIn is a LetIn. Extremely slow since the computed - LetIn is later reduced and maybe also re-checked. - (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t)) - *) - (* The type of the LetIn is reduced. Much faster than the previous - solution. Moreover the inferred type is probably very different - from the expected one. - (CicReduction.whd ~subst context - (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t))) - *) - (* One-step LetIn reduction. Even faster than the previous solution. - Moreover the inferred type is closer to the expected one. *) - let ty1,ugraph2 = - type_of_aux ~logger - ((Some (n,(C.Def (s,ty))))::context) t ugraph1 - in - (CicSubstitution.subst ~avoid_beta_redexes:true s ty1),ugraph2 - | C.Appl (he::tl) when List.length tl > 0 -> - let hetype,ugraph1 = type_of_aux ~logger context he ugraph in - let tlbody_and_type,ugraph2 = - List.fold_right ( - fun x (l,ugraph) -> - let ty,ugraph1 = type_of_aux ~logger context x ugraph in - (*let _,ugraph1 = type_of_aux ~logger context ty ugraph1 in*) - ((x,ty)::l,ugraph1)) - tl ([],ugraph1) - in - (* TASSI: questa c'era nel mio... ma non nel CVS... *) - (* let _,ugraph2 = type_of_aux context hetype ugraph2 in *) - eat_prods ~subst context hetype tlbody_and_type ugraph2 - | C.Appl _ -> raise (AssertFailure (lazy "Appl: no arguments")) - | C.Const (uri,exp_named_subst) -> - incr fdebug ; - let ugraph1 = - check_exp_named_subst ~logger ~subst context exp_named_subst ugraph - in - let cty,ugraph2 = type_of_constant ~logger uri ugraph1 in - let cty1 = - CicSubstitution.subst_vars exp_named_subst cty - in - decr fdebug ; - cty1,ugraph2 - | C.MutInd (uri,i,exp_named_subst) -> - incr fdebug ; - let ugraph1 = - check_exp_named_subst ~logger ~subst context exp_named_subst ugraph - in - (* TASSI: da me c'era anche questa, ma in CVS no *) - let mty,ugraph2 = type_of_mutual_inductive_defs ~logger uri i ugraph1 in - (* fine parte dubbia *) - let cty = - CicSubstitution.subst_vars exp_named_subst mty - in - decr fdebug ; - cty,ugraph2 - | C.MutConstruct (uri,i,j,exp_named_subst) -> - let ugraph1 = - check_exp_named_subst ~logger ~subst context exp_named_subst ugraph - in - (* TASSI: idem come sopra *) - let mty,ugraph2 = - type_of_mutual_inductive_constr ~logger uri i j ugraph1 - in - let cty = - CicSubstitution.subst_vars exp_named_subst mty - in - cty,ugraph2 - | C.MutCase (uri,i,outtype,term,pl) -> - let outsort,ugraph1 = type_of_aux ~logger context outtype ugraph in - let (need_dummy, k) = - let rec guess_args context t = - let outtype = CicReduction.whd ~subst context t in - match outtype with - C.Sort _ -> (true, 0) - | C.Prod (name, s, t) -> - let (b, n) = - guess_args ((Some (name,(C.Decl s)))::context) t in - if n = 0 then - (* last prod before sort *) - match CicReduction.whd ~subst context s with -(*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) - C.MutInd (uri',i',_) when U.eq uri' uri && i' = i -> - (false, 1) -(*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) - | C.Appl ((C.MutInd (uri',i',_)) :: _) - when U.eq uri' uri && i' = i -> (false, 1) - | _ -> (true, 1) - else - (b, n + 1) - | _ -> - raise - (TypeCheckerFailure - (lazy (sprintf - "Malformed case analasys' output type %s" - (CicPp.ppterm outtype)))) - in -(* - let (parameters, arguments, exp_named_subst),ugraph2 = - let ty,ugraph2 = type_of_aux context term ugraph1 in - match R.whd ~subst context ty with - (*CSC manca il caso dei CAST *) -(*CSC: ma servono i parametri (uri,i)? Se si', perche' non serve anche il *) -(*CSC: parametro exp_named_subst? Se no, perche' non li togliamo? *) -(*CSC: Hint: nella DTD servono per gli stylesheet. *) - C.MutInd (uri',i',exp_named_subst) as typ -> - if U.eq uri uri' && i = i' then - ([],[],exp_named_subst),ugraph2 - else - raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysys: analysed term type is %s, but is expected to be (an application of) %s#1/%d{_}") - (CicPp.ppterm typ) (U.string_of_uri uri) i))) - | C.Appl - ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) as typ' -> - if U.eq uri uri' && i = i' then - let params,args = - split tl (List.length tl - k) - in (params,args,exp_named_subst),ugraph2 - else - raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysys: analysed term type is %s, "^ - "but is expected to be (an application of) "^ - "%s#1/%d{_}") - (CicPp.ppterm typ') (U.string_of_uri uri) i))) - | _ -> - raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysis: "^ - "analysed term %s is not an inductive one") - (CicPp.ppterm term)))) -*) - let (b, k) = guess_args context outsort in - if not b then (b, k - 1) else (b, k) in - let (parameters, arguments, exp_named_subst),ugraph2 = - let ty,ugraph2 = type_of_aux ~logger context term ugraph1 in - match R.whd ~subst context ty with - C.MutInd (uri',i',exp_named_subst) as typ -> - if U.eq uri uri' && i = i' then - ([],[],exp_named_subst),ugraph2 - else raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysys: analysed term type is %s (%s#1/%d{_}), but is expected to be (an application of) %s#1/%d{_}") - (CicPp.ppterm typ) (U.string_of_uri uri') i' (U.string_of_uri uri) i))) - | C.Appl ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) -> - if U.eq uri uri' && i = i' then - let params,args = - split tl (List.length tl - k) - in (params,args,exp_named_subst),ugraph2 - else raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysys: analysed term type is %s (%s#1/%d{_}), but is expected to be (an application of) %s#1/%d{_}") - (CicPp.ppterm typ) (U.string_of_uri uri') i' (U.string_of_uri uri) i))) - | _ -> - raise - (TypeCheckerFailure - (lazy (sprintf - "Case analysis: analysed term %s is not an inductive one" - (CicPp.ppterm term)))) - in - (* - let's control if the sort elimination is allowed: - [(I q1 ... qr)|B] - *) - let sort_of_ind_type = - if parameters = [] then - C.MutInd (uri,i,exp_named_subst) - else - C.Appl ((C.MutInd (uri,i,exp_named_subst))::parameters) - in - let type_of_sort_of_ind_ty,ugraph3 = - type_of_aux ~logger context sort_of_ind_type ugraph2 in - let b,ugraph4 = - check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i - need_dummy sort_of_ind_type type_of_sort_of_ind_ty outsort ugraph3 - in - if not b then - raise - (TypeCheckerFailure (lazy ("Case analysis: sort elimination not allowed"))); - (* let's check if the type of branches are right *) - let parsno,constructorsno = - let obj,_ = - try - CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri - with Not_found -> assert false - in - match obj with - C.InductiveDefinition (il,_,parsno,_) -> - let _,_,_,cl = - try List.nth il i with Failure _ -> assert false - in - parsno, List.length cl - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - in - if List.length pl <> constructorsno then - raise (TypeCheckerFailure - (lazy ("Wrong number of cases in case analysis"))) ; - let (_,branches_ok,ugraph5) = - List.fold_left - (fun (j,b,ugraph) p -> - if b then - let cons = - if parameters = [] then - (C.MutConstruct (uri,i,j,exp_named_subst)) - else - (C.Appl - (C.MutConstruct (uri,i,j,exp_named_subst)::parameters)) - in - let ty_p,ugraph1 = type_of_aux ~logger context p ugraph in - let ty_cons,ugraph3 = type_of_aux ~logger context cons ugraph1 in - (* 2 is skipped *) - let ty_branch = - type_of_branch ~subst context parsno need_dummy outtype cons - ty_cons in - let b1,ugraph4 = - R.are_convertible - ~subst ~metasenv context ty_p ty_branch ugraph3 - in -(* Debugging code -if not b1 then -begin -prerr_endline ("\n!OUTTYPE= " ^ CicPp.ppterm outtype); -prerr_endline ("!CONS= " ^ CicPp.ppterm cons); -prerr_endline ("!TY_CONS= " ^ CicPp.ppterm ty_cons); -prerr_endline ("#### " ^ CicPp.ppterm ty_p ^ "\n<==>\n" ^ CicPp.ppterm ty_branch); -end; -*) - if not b1 then - debug_print (lazy - ("#### " ^ CicPp.ppterm ty_p ^ - " <==> " ^ CicPp.ppterm ty_branch)); - (j + 1,b1,ugraph4) - else - (j,false,ugraph) - ) (1,true,ugraph4) pl - in - if not branches_ok then - raise - (TypeCheckerFailure (lazy "Case analysys: wrong branch type")); - let arguments' = - if not need_dummy then outtype::arguments@[term] - else outtype::arguments in - let outtype = - if need_dummy && arguments = [] then outtype - else CicReduction.head_beta_reduce (C.Appl arguments') - in - outtype,ugraph5 - | C.Fix (i,fl) -> - let types,kl,ugraph1,len = - List.fold_left - (fun (types,kl,ugraph,len) (n,k,ty,_) -> - let _,ugraph1 = type_of_aux ~logger context ty ugraph in - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - k::kl,ugraph1,len+1) - ) ([],[],ugraph,0) fl - in - let ugraph2 = - List.fold_left - (fun ugraph (name,x,ty,bo) -> - let ty_bo,ugraph1 = - type_of_aux ~logger (types@context) bo ugraph - in - let b,ugraph2 = - R.are_convertible ~subst ~metasenv (types@context) - ty_bo (CicSubstitution.lift len ty) ugraph1 in - if b then - begin - let (m, eaten, context') = - eat_lambdas ~subst (types @ context) (x + 1) bo - in - (* - let's control the guarded by - destructors conditions D{f,k,x,M} - *) - if not (guarded_by_destructors ~subst context' eaten - (len + eaten) kl 1 [] m) then - raise - (TypeCheckerFailure - (lazy ("Fix: not guarded by destructors"))) - else - ugraph2 - end - else - raise (TypeCheckerFailure (lazy ("Fix: ill-typed bodies"))) - ) ugraph1 fl in - (*CSC: controlli mancanti solo su D{f,k,x,M} *) - let (_,_,ty,_) = List.nth fl i in - ty,ugraph2 - | C.CoFix (i,fl) -> - let types,ugraph1,len = - List.fold_left - (fun (l,ugraph,len) (n,ty,_) -> - let _,ugraph1 = - type_of_aux ~logger context ty ugraph in - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::l, - ugraph1,len+1) - ) ([],ugraph,0) fl - in - let ugraph2 = - List.fold_left - (fun ugraph (_,ty,bo) -> - let ty_bo,ugraph1 = - type_of_aux ~logger (types @ context) bo ugraph - in - let b,ugraph2 = - R.are_convertible ~subst ~metasenv (types @ context) ty_bo - (CicSubstitution.lift len ty) ugraph1 - in - if b then - begin - (* let's control that the returned type is coinductive *) - match returns_a_coinductive ~subst context ty with - None -> - raise - (TypeCheckerFailure - (lazy "CoFix: does not return a coinductive type")) - | Some uri -> - (* - let's control the guarded by constructors - conditions C{f,M} - *) - if not (guarded_by_constructors ~subst - (types @ context) 0 len false bo [] uri) then - raise - (TypeCheckerFailure - (lazy "CoFix: not guarded by constructors")) - else - ugraph2 - end - else - raise - (TypeCheckerFailure (lazy "CoFix: ill-typed bodies")) - ) ugraph1 fl - in - let (_,ty,_) = List.nth fl i in - ty,ugraph2 - - and check_exp_named_subst ~logger ~subst context ugraph = - let rec check_exp_named_subst_aux ~logger esubsts l ugraph = - match l with - [] -> ugraph - | ((uri,t) as item)::tl -> - let ty_uri,ugraph1 = type_of_variable ~logger uri ugraph in - let typeofvar = - CicSubstitution.subst_vars esubsts ty_uri in - let typeoft,ugraph2 = type_of_aux ~logger context t ugraph1 in - let b,ugraph3 = - CicReduction.are_convertible ~subst ~metasenv - context typeoft typeofvar ugraph2 - in - if b then - check_exp_named_subst_aux ~logger (esubsts@[item]) tl ugraph3 - else - begin - CicReduction.fdebug := 0 ; - ignore - (CicReduction.are_convertible - ~subst ~metasenv context typeoft typeofvar ugraph2) ; - fdebug := 0 ; - debug typeoft [typeofvar] ; - raise (TypeCheckerFailure (lazy "Wrong Explicit Named Substitution")) - end - in - check_exp_named_subst_aux ~logger [] ugraph - - and sort_of_prod ~subst context (name,s) (t1, t2) ugraph = - let module C = Cic in - let t1' = CicReduction.whd ~subst context t1 in - let t2' = CicReduction.whd ~subst ((Some (name,C.Decl s))::context) t2 in - match (t1', t2') with - (C.Sort s1, C.Sort s2) - when (s2 = C.Prop or s2 = C.Set or s2 = C.CProp) -> - (* different from Coq manual!!! *) - C.Sort s2,ugraph - | (C.Sort (C.Type t1), C.Sort (C.Type t2)) -> - (* TASSI: CONSRTAINTS: the same in doubletypeinference, cicrefine *) - let t' = CicUniv.fresh() in - (try - let ugraph1 = CicUniv.add_ge t' t1 ugraph in - let ugraph2 = CicUniv.add_ge t' t2 ugraph1 in - C.Sort (C.Type t'),ugraph2 - with - CicUniv.UniverseInconsistency msg -> raise (TypeCheckerFailure msg)) - | (C.Sort _,C.Sort (C.Type t1)) -> - (* TASSI: CONSRTAINTS: the same in doubletypeinference, cicrefine *) - C.Sort (C.Type t1),ugraph (* c'e' bisogno di un fresh? *) - | (C.Meta _, C.Sort _) -> t2',ugraph - | (C.Meta _, (C.Meta (_,_) as t)) - | (C.Sort _, (C.Meta (_,_) as t)) when CicUtil.is_closed t -> - t2',ugraph - | (_,_) -> raise (TypeCheckerFailure (lazy (sprintf - "Prod: expected two sorts, found = %s, %s" (CicPp.ppterm t1') - (CicPp.ppterm t2')))) - - and eat_prods ~subst context hetype l ugraph = - (*CSC: siamo sicuri che le are_convertible non lavorino con termini non *) - (*CSC: cucinati *) - match l with - [] -> hetype,ugraph - | (hete, hety)::tl -> - (match (CicReduction.whd ~subst context hetype) with - Cic.Prod (n,s,t) -> - let b,ugraph1 = -(*if (match hety,s with Cic.Sort _,Cic.Sort _ -> false | _,_ -> true) && hety <> s then( -prerr_endline ("AAA22: " ^ CicPp.ppterm hete ^ ": " ^ CicPp.ppterm hety ^ " <==> " ^ CicPp.ppterm s); let res = CicReduction.are_convertible ~subst ~metasenv context hety s ugraph in prerr_endline "#"; res) else*) - CicReduction.are_convertible - ~subst ~metasenv context hety s ugraph - in - if b then - begin - CicReduction.fdebug := -1 ; - eat_prods ~subst context - (CicSubstitution.subst ~avoid_beta_redexes:true hete t) - tl ugraph1 - (*TASSI: not sure *) - end - else - begin - CicReduction.fdebug := 0 ; - ignore (CicReduction.are_convertible - ~subst ~metasenv context s hety ugraph) ; - fdebug := 0 ; - debug s [hety] ; - raise - (TypeCheckerFailure - (lazy (sprintf - ("Appl: wrong parameter-type, expected %s, found %s") - (CicPp.ppterm hetype) (CicPp.ppterm s)))) - end - | _ -> - raise (TypeCheckerFailure - (lazy "Appl: this is not a function, it cannot be applied")) - ) - - and returns_a_coinductive ~subst context ty = - let module C = Cic in - match CicReduction.whd ~subst context ty with - C.MutInd (uri,i,_) -> - (*CSC: definire una funzioncina per questo codice sempre replicato *) - let obj,_ = - try - CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri - with Not_found -> assert false - in - (match obj with - C.InductiveDefinition (itl,_,_,_) -> - let (_,is_inductive,_,_) = List.nth itl i in - if is_inductive then None else (Some uri) - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - ) - | C.Appl ((C.MutInd (uri,i,_))::_) -> - (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in - match o with - C.InductiveDefinition (itl,_,_,_) -> - let (_,is_inductive,_,_) = List.nth itl i in - if is_inductive then None else (Some uri) - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) - ) - | C.Prod (n,so,de) -> - returns_a_coinductive ~subst ((Some (n,C.Decl so))::context) de - | _ -> None - in -(*CSC -debug_print (lazy ("INIZIO TYPE_OF_AUX " ^ CicPp.ppterm t)) ; flush stderr ; -let res = -*) type_of_aux ~logger context t ugraph -(* -in debug_print (lazy "FINE TYPE_OF_AUX") ; flush stderr ; res -*) -(* is a small constructor? *) -(*CSC: ottimizzare calcolando staticamente *) -and is_small_or_non_informative ~condition ~logger context paramsno c ugraph = - let rec is_small_or_non_informative_aux ~logger context c ugraph = - let module C = Cic in - match CicReduction.whd context c with - C.Prod (n,so,de) -> - let s,ugraph1 = type_of_aux' ~logger [] context so ugraph in - let b = condition s in - if b then - is_small_or_non_informative_aux - ~logger ((Some (n,(C.Decl so)))::context) de ugraph1 - else - false,ugraph1 - | _ -> true,ugraph (*CSC: we trust the type-checker *) - in - let (context',dx) = split_prods ~subst:[] context paramsno c in - is_small_or_non_informative_aux ~logger context' dx ugraph - -and is_small ~logger = - is_small_or_non_informative - ~condition:(fun s -> s=Cic.Sort Cic.Prop || s=Cic.Sort Cic.Set) - ~logger - -and is_non_informative ~logger = - is_small_or_non_informative - ~condition:(fun s -> s=Cic.Sort Cic.Prop) - ~logger - -and type_of ~logger t ugraph = -(*CSC -debug_print (lazy ("INIZIO TYPE_OF_AUX' " ^ CicPp.ppterm t)) ; flush stderr ; -let res = -*) - type_of_aux' ~logger [] [] t ugraph -(*CSC -in debug_print (lazy "FINE TYPE_OF_AUX'") ; flush stderr ; res -*) ;; -let typecheck_obj0 ~logger uri ugraph = - let module C = Cic in - function - C.Constant (_,Some te,ty,_,_) -> - let _,ugraph = type_of ~logger ty ugraph in - let ty_te,ugraph = type_of ~logger te ugraph in - let b,ugraph = (CicReduction.are_convertible [] ty_te ty ugraph) in - if not b then - raise (TypeCheckerFailure - (lazy - ("the type of the body is not the one expected:\n" ^ - CicPp.ppterm ty_te ^ "\nvs\n" ^ - CicPp.ppterm ty))) - else - ugraph - | C.Constant (_,None,ty,_,_) -> - (* only to check that ty is well-typed *) - let _,ugraph = type_of ~logger ty ugraph in - ugraph - | C.CurrentProof (_,conjs,te,ty,_,_) -> - let _,ugraph = - List.fold_left - (fun (metasenv,ugraph) ((_,context,ty) as conj) -> - let _,ugraph = - type_of_aux' ~logger metasenv context ty ugraph - in - metasenv @ [conj],ugraph - ) ([],ugraph) conjs - in - let _,ugraph = type_of_aux' ~logger conjs [] ty ugraph in - let type_of_te,ugraph = - type_of_aux' ~logger conjs [] te ugraph - in - let b,ugraph = CicReduction.are_convertible [] type_of_te ty ugraph in - if not b then - raise (TypeCheckerFailure (lazy (sprintf - "the current proof is not well typed because the type %s of the body is not convertible to the declared type %s" - (CicPp.ppterm type_of_te) (CicPp.ppterm ty)))) - else - ugraph - | C.Variable (_,bo,ty,_,_) -> - (* only to check that ty is well-typed *) - let _,ugraph = type_of ~logger ty ugraph in - (match bo with - None -> ugraph - | Some bo -> - let ty_bo,ugraph = type_of ~logger bo ugraph in - let b,ugraph = CicReduction.are_convertible [] ty_bo ty ugraph in - if not b then - raise (TypeCheckerFailure - (lazy "the body is not the one expected")) - else - ugraph - ) - | (C.InductiveDefinition _ as obj) -> - check_mutual_inductive_defs ~logger uri obj ugraph - -let typecheck uri = - let module C = Cic in - let module R = CicReduction in - let module U = UriManager in - let logger = new CicLogger.logger in - (* ??? match CicEnvironment.is_type_checked ~trust:true uri with ???? *) - match CicEnvironment.is_type_checked ~trust:false CicUniv.empty_ugraph uri with - CicEnvironment.CheckedObj (cobj,ugraph') -> - (* debug_print (lazy ("NON-INIZIO A TYPECHECKARE " ^ U.string_of_uri uri));*) - cobj,ugraph' - | CicEnvironment.UncheckedObj uobj -> - (* let's typecheck the uncooked object *) - logger#log (`Start_type_checking uri) ; - (* debug_print (lazy ("INIZIO A TYPECHECKARE " ^ U.string_of_uri uri)); *) - let ugraph = typecheck_obj0 ~logger uri CicUniv.empty_ugraph uobj in - try - CicEnvironment.set_type_checking_info uri; - logger#log (`Type_checking_completed uri); - match CicEnvironment.is_type_checked ~trust:false ugraph uri with - CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' - | _ -> raise CicEnvironmentError - with - (* - this is raised if set_type_checking_info is called on an object - that has no associated universe file. If we are in univ_maker - phase this is OK since univ_maker will properly commit the - object. - *) - Invalid_argument s -> - (*debug_print (lazy s);*) - uobj,ugraph -;; - -let typecheck_obj ~logger uri obj = - let ugraph = typecheck_obj0 ~logger uri CicUniv.empty_ugraph obj in - let ugraph, univlist, obj = CicUnivUtils.clean_and_fill uri obj ugraph in - CicEnvironment.add_type_checked_obj uri (obj,ugraph,univlist) - (** wrappers which instantiate fresh loggers *) -let profiler = HExtlib.profile "K/CicTypeChecker.type_of_aux'" - -let type_of_aux' ?(subst = []) metasenv context t ugraph = - let logger = new CicLogger.logger in - profiler.HExtlib.profile - (type_of_aux' ~logger ~subst metasenv context t) ugraph - -let typecheck_obj uri obj = - let logger = new CicLogger.logger in - typecheck_obj ~logger uri obj - (* check_allowed_sort_elimination uri i s1 s2 This function is used outside the kernel to determine in advance whether a MutCase will be allowed or not. @@ -2274,9 +553,36 @@ Deannotate.type_of_aux' := fun context t -> fst (type_of_aux' [] context t CicUn module C = NCic module R = NCicReduction +module Ref = NReference module S = NCicSubstitution module U = NCicUtils +module E = NCicEnvironment +let rec split_prods ~subst context n te = + match (n, R.whd ~subst context te) with + | (0, _) -> context,te + | (n, C.Prod (name,so,ta)) when n > 0 -> + split_prods ~subst ((name,(C.Decl so))::context) (n - 1) ta + | (_, _) -> raise (AssertFailure (lazy "split_prods")) +;; + +let debruijn ?(cb=fun _ _ -> ()) uri number_of_types = + let rec aux k t = + let res = + match t with + | C.Meta (i,(s,C.Ctx l)) -> + let l1 = NCicUtils.sharing_map (aux (k-s)) l in + if l1 == l then t else C.Meta (i,(s,C.Ctx l1)) + | C.Meta _ -> t + | C.Const (Ref.Ref (_,uri1,(Ref.Fix (no,_) | Ref.CoFix no))) + | C.Const (Ref.Ref (_,uri1,Ref.Ind no)) when NUri.eq uri uri1 -> + C.Rel (k + number_of_types - no) + | t -> NCicUtils.map (fun _ k -> k+1) k aux t + in + cb t res; res + in + aux 0 +;; let sort_of_prod ~subst context (name,s) (t1, t2) = let t1 = R.whd ~subst context t1 in @@ -2302,25 +608,73 @@ let eat_prods ~subst ~metasenv context ty_he args_with_ty = | (arg, ty_arg)::tl -> (match R.whd ~subst context ty_he with | C.Prod (n,s,t) -> +(* + prerr_endline (NCicPp.ppterm ~context s ^ " - Vs - " ^ NCicPp.ppterm + ~context ty_arg); + prerr_endline (NCicPp.ppterm ~context (S.subst ~avoid_beta_redexes:true arg t)); +*) if R.are_convertible ~subst ~metasenv context ty_arg s then aux (S.subst ~avoid_beta_redexes:true arg t) tl - else + else raise (TypeCheckerFailure - (lazy (Printf.sprintf + (lazy (Printf.sprintf ("Appl: wrong parameter-type, expected %s, found %s") (NCicPp.ppterm ty_arg) (NCicPp.ppterm s)))) | _ -> raise (TypeCheckerFailure - (lazy "Appl: this is not a function, it cannot be applied"))) + (lazy "Appl: this is not a function, it cannot be applied"))) in aux ty_he args_with_ty ;; +let fix_lefts_in_constrs ~subst uri paramsno tyl i = + let len = List.length tyl in + let _,_,arity,cl = List.nth tyl i in + let tys = List.map (fun (_,n,ty,_) -> n,C.Decl ty) tyl in + let cl' = + List.map + (fun (_,id,ty) -> + let debruijnedty = debruijn uri len ty in + id, snd (split_prods ~subst tys paramsno ty), + snd (split_prods ~subst tys paramsno debruijnedty)) + cl + in + let lefts = fst (split_prods ~subst [] paramsno arity) in + tys@lefts, len, cl' +;; + +exception DoesOccur;; + +let does_not_occur ~subst context n nn t = + let rec aux (context,n,nn as k) _ = function + | C.Rel m when m > n && m <= nn -> raise DoesOccur + | C.Rel m -> + (try (match List.nth context (m-1) with + | _,C.Def (bo,_) -> aux k () (S.lift m bo) + | _ -> ()) + with Failure _ -> assert false) + | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))) -> (* closed meta *) () + | C.Meta (mno,(s,l)) -> + (try + let _,_,term,_ = U.lookup_subst mno subst in + aux (context,n+s,nn+s) () (S.subst_meta (0,l) term) + with CicUtil.Subst_not_found _ -> match l with + | C.Irl len -> if not (n >= s+len || s > nn) then raise DoesOccur + | C.Ctx lc -> List.iter (aux (context,n+s,nn+s) ()) lc) + | t -> U.fold (fun e (ctx,n,nn) -> (e::ctx,n+1,nn+1)) k aux () t + in + try aux (context,n,nn) () t; true + with DoesOccur -> false +;; + +exception NotGuarded;; let rec typeof ~subst ~metasenv context term = - let rec typeof_aux context = function + let rec typeof_aux context = + fun t -> (*prerr_endline (NCicPp.ppterm ~context t); *) + match t with | C.Rel n -> (try match List.nth context (n - 1) with @@ -2333,10 +687,10 @@ let rec typeof ~subst ~metasenv context term = | C.Meta (n,l) as t -> let canonical_context,ty = try - let _,c,_,ty = NCicUtils.lookup_subst n subst in c,ty - with NCicUtils.Subst_not_found _ -> try - let _,_,c,ty = NCicUtils.lookup_meta n metasenv in c,ty - with NCicUtils.Meta_not_found _ -> + let _,c,_,ty = U.lookup_subst n subst in c,ty + with U.Subst_not_found _ -> try + let _,_,c,ty = U.lookup_meta n metasenv in c,ty + with U.Meta_not_found _ -> raise (AssertFailure (lazy (Printf.sprintf "%s not found" (NCicPp.ppterm t)))) in @@ -2358,7 +712,7 @@ let rec typeof ~subst ~metasenv context term = "the source %s should be a type; instead it is a term " ^^ "of type %s") (NCicPp.ppterm s) (NCicPp.ppterm sort))))); let ty = typeof_aux ((n,(C.Decl s))::context) t in - C.Prod (n,s,ty) + C.Prod (n,s,ty) | C.LetIn (n,ty,t,bo) -> let ty_t = typeof_aux context t in if not (R.are_convertible ~subst ~metasenv context ty ty_t) then @@ -2373,198 +727,110 @@ let rec typeof ~subst ~metasenv context term = | C.Appl (he::(_::_ as args)) -> let ty_he = typeof_aux context he in let args_with_ty = List.map (fun t -> t, typeof_aux context t) args in +(* + prerr_endline ("HEAD: " ^ NCicPp.ppterm ~context ty_he); + prerr_endline ("TARGS: " ^ String.concat " | " (List.map (NCicPp.ppterm + ~context) (List.map snd args_with_ty))); + prerr_endline ("ARGS: " ^ String.concat " | " (List.map (NCicPp.ppterm + ~context) (List.map fst args_with_ty))); +*) eat_prods ~subst ~metasenv context ty_he args_with_ty | C.Appl _ -> raise (AssertFailure (lazy "Appl of length < 2")) - | C.Match (r,outtype,term,pl) -> -assert false (* FINQUI + | C.Match (Ref.Ref (dummy_depth,uri,Ref.Ind tyno) as r,outtype,term,pl) -> let outsort = typeof_aux context outtype in - let (need_dummy, k) = - let rec guess_args context t = - let outtype = R.whd ~subst context t in - match outtype with - C.Sort _ -> (true, 0) - | C.Prod (name, s, t) -> - let (b, n) = - guess_args ((Some (name,(C.Decl s)))::context) t in - if n = 0 then - (* last prod before sort *) - match CicReduction.whd ~subst context s with -(*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) - C.MutInd (uri',i',_) when U.eq uri' uri && i' = i -> - (false, 1) -(*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) - | C.Appl ((C.MutInd (uri',i',_)) :: _) - when U.eq uri' uri && i' = i -> (false, 1) - | _ -> (true, 1) - else - (b, n + 1) - | _ -> - raise - (TypeCheckerFailure - (lazy (sprintf - "Malformed case analasys' output type %s" - (CicPp.ppterm outtype)))) - in -(* - let (parameters, arguments, exp_named_subst),ugraph2 = - let ty,ugraph2 = type_of_aux context term ugraph1 in - match R.whd ~subst context ty with - (*CSC manca il caso dei CAST *) -(*CSC: ma servono i parametri (uri,i)? Se si', perche' non serve anche il *) -(*CSC: parametro exp_named_subst? Se no, perche' non li togliamo? *) -(*CSC: Hint: nella DTD servono per gli stylesheet. *) - C.MutInd (uri',i',exp_named_subst) as typ -> - if U.eq uri uri' && i = i' then - ([],[],exp_named_subst),ugraph2 - else - raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysys: analysed term type is %s, but is expected to be (an application of) %s#1/%d{_}") - (CicPp.ppterm typ) (U.string_of_uri uri) i))) - | C.Appl - ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) as typ' -> - if U.eq uri uri' && i = i' then - let params,args = - split tl (List.length tl - k) - in (params,args,exp_named_subst),ugraph2 - else - raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysys: analysed term type is %s, "^ - "but is expected to be (an application of) "^ - "%s#1/%d{_}") - (CicPp.ppterm typ') (U.string_of_uri uri) i))) - | _ -> - raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysis: "^ - "analysed term %s is not an inductive one") - (CicPp.ppterm term)))) -*) - let (b, k) = guess_args context outsort in - if not b then (b, k - 1) else (b, k) in - let (parameters, arguments, exp_named_subst),ugraph2 = - let ty,ugraph2 = type_of_aux ~logger context term ugraph1 in - match R.whd ~subst context ty with - C.MutInd (uri',i',exp_named_subst) as typ -> - if U.eq uri uri' && i = i' then - ([],[],exp_named_subst),ugraph2 - else raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysys: analysed term type is %s (%s#1/%d{_}), but is expected to be (an application of) %s#1/%d{_}") - (CicPp.ppterm typ) (U.string_of_uri uri') i' (U.string_of_uri uri) i))) - | C.Appl ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) -> - if U.eq uri uri' && i = i' then - let params,args = - split tl (List.length tl - k) - in (params,args,exp_named_subst),ugraph2 - else raise - (TypeCheckerFailure - (lazy (sprintf - ("Case analysys: analysed term type is %s (%s#1/%d{_}), but is expected to be (an application of) %s#1/%d{_}") - (CicPp.ppterm typ) (U.string_of_uri uri') i' (U.string_of_uri uri) i))) + let leftno = E.get_indty_leftno r in + let parameters, arguments = + let ty = R.whd ~subst context (typeof_aux context term) in + let r',tl = + match ty with + C.Const (Ref.Ref (_,_,Ref.Ind _) as r') -> r',[] + | C.Appl (C.Const (Ref.Ref (_,_,Ref.Ind _) as r') :: tl) -> r',tl | _ -> - raise - (TypeCheckerFailure - (lazy (sprintf - "Case analysis: analysed term %s is not an inductive one" - (CicPp.ppterm term)))) - in - (* - let's control if the sort elimination is allowed: - [(I q1 ... qr)|B] - *) - let sort_of_ind_type = - if parameters = [] then - C.MutInd (uri,i,exp_named_subst) + raise + (TypeCheckerFailure (lazy (Printf.sprintf + "Case analysis: analysed term %s is not an inductive one" + (NCicPp.ppterm term)))) in + if not (Ref.eq r r') then + raise + (TypeCheckerFailure (lazy (Printf.sprintf + ("Case analysys: analysed term type is %s, but is expected " ^^ + "to be (an application of) %s") + (NCicPp.ppterm ty) (NCicPp.ppterm (C.Const r'))))) else - C.Appl ((C.MutInd (uri,i,exp_named_subst))::parameters) - in - let type_of_sort_of_ind_ty,ugraph3 = - type_of_aux ~logger context sort_of_ind_type ugraph2 in - let b,ugraph4 = - check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i - need_dummy sort_of_ind_type type_of_sort_of_ind_ty outsort ugraph3 - in - if not b then - raise - (TypeCheckerFailure (lazy ("Case analysis: sort elimination not allowed"))); - (* let's check if the type of branches are right *) - let parsno,constructorsno = - let obj,_ = - try - CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri - with Not_found -> assert false - in - match obj with - C.InductiveDefinition (il,_,parsno,_) -> - let _,_,_,cl = - try List.nth il i with Failure _ -> assert false - in - parsno, List.length cl - | _ -> - raise (TypeCheckerFailure - (lazy ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri))) + try HExtlib.split_nth leftno tl + with + Failure _ -> + raise (TypeCheckerFailure (lazy (Printf.sprintf + "%s is partially applied" (NCicPp.ppterm ty)))) in + (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) + let sort_of_ind_type = + if parameters = [] then C.Const r + else C.Appl ((C.Const r)::parameters) in + let type_of_sort_of_ind_ty = typeof_aux context sort_of_ind_type in + if not (check_allowed_sort_elimination ~subst ~metasenv r context + sort_of_ind_type type_of_sort_of_ind_ty outsort) + then raise (TypeCheckerFailure (lazy ("Sort elimination not allowed"))); + (* let's check if the type of branches are right *) + let leftno,constructorsno = + let inductive,leftno,itl,_,i = E.get_checked_indtys r in + let _,name,ty,cl = List.nth itl i in + let cl_len = List.length cl in + leftno, cl_len in if List.length pl <> constructorsno then - raise (TypeCheckerFailure - (lazy ("Wrong number of cases in case analysis"))) ; - let (_,branches_ok,ugraph5) = + raise (TypeCheckerFailure (lazy ("Wrong number of cases in a match"))); + let j,branches_ok,p_ty, exp_p_ty = List.fold_left - (fun (j,b,ugraph) p -> - if b then - let cons = - if parameters = [] then - (C.MutConstruct (uri,i,j,exp_named_subst)) - else - (C.Appl - (C.MutConstruct (uri,i,j,exp_named_subst)::parameters)) + (fun (j,b,old_p_ty,old_exp_p_ty) p -> + if b then + let cons = + let cons = Ref.Ref (dummy_depth, uri, Ref.Con (tyno, j)) in + if parameters = [] then C.Const cons + else C.Appl (C.Const cons::parameters) in - let ty_p,ugraph1 = type_of_aux ~logger context p ugraph in - let ty_cons,ugraph3 = type_of_aux ~logger context cons ugraph1 in - (* 2 is skipped *) - let ty_branch = - type_of_branch ~subst context parsno need_dummy outtype cons - ty_cons in - let b1,ugraph4 = - R.are_convertible - ~subst ~metasenv context ty_p ty_branch ugraph3 - in -(* Debugging code -if not b1 then -begin -prerr_endline ("\n!OUTTYPE= " ^ CicPp.ppterm outtype); -prerr_endline ("!CONS= " ^ CicPp.ppterm cons); -prerr_endline ("!TY_CONS= " ^ CicPp.ppterm ty_cons); -prerr_endline ("#### " ^ CicPp.ppterm ty_p ^ "\n<==>\n" ^ CicPp.ppterm ty_branch); -end; -*) - if not b1 then - debug_print (lazy - ("#### " ^ CicPp.ppterm ty_p ^ - " <==> " ^ CicPp.ppterm ty_branch)); - (j + 1,b1,ugraph4) - else - (j,false,ugraph) - ) (1,true,ugraph4) pl - in - if not branches_ok then - raise - (TypeCheckerFailure (lazy "Case analysys: wrong branch type")); - let arguments' = - if not need_dummy then outtype::arguments@[term] - else outtype::arguments in - let outtype = - if need_dummy && arguments = [] then outtype - else CicReduction.head_beta_reduce (C.Appl arguments') - in - outtype,ugraph5 - *) + let ty_p = typeof_aux context p in + let ty_cons = typeof_aux context cons in + let ty_branch = + type_of_branch ~subst context leftno outtype cons ty_cons 0 + in + j+1, R.are_convertible ~subst ~metasenv context ty_p ty_branch, + ty_p, ty_branch + else + j,false,old_p_ty,old_exp_p_ty + ) (1,true,C.Sort C.Prop,C.Sort C.Prop) pl + in + if not branches_ok then + raise + (TypeCheckerFailure + (lazy (Printf.sprintf ("Branch for constructor %s :=\n%s\n"^^ + "has type %s\nnot convertible with %s") (NCicPp.ppterm (C.Const + (Ref.Ref (dummy_depth, uri, Ref.Con (tyno, j))))) + (NCicPp.ppterm ~context (List.nth pl (j-1))) + (NCicPp.ppterm ~context p_ty) (NCicPp.ppterm ~context exp_p_ty)))); + let res = outtype::arguments@[term] in + R.head_beta_reduce (C.Appl res) + | C.Match _ -> assert false + + and type_of_branch ~subst context leftno outty cons tycons liftno = + match R.whd ~subst context tycons with + | C.Const (Ref.Ref (_,_,Ref.Ind _)) -> C.Appl [S.lift liftno outty ; cons] + | C.Appl (C.Const (Ref.Ref (_,_,Ref.Ind _))::tl) -> + let _,arguments = HExtlib.split_nth leftno tl in + C.Appl (S.lift liftno outty::arguments@[cons]) + | C.Prod (name,so,de) -> + let cons = + match S.lift 1 cons with + | C.Appl l -> C.Appl (l@[C.Rel 1]) + | t -> C.Appl [t ; C.Rel 1] + in + C.Prod (name,so, + type_of_branch ~subst ((name,(C.Decl so))::context) + leftno outty cons de (liftno+1)) + | _ -> raise (AssertFailure (lazy "type_of_branch")) + + (* check_metasenv_consistency checks that the "canonical" context of a + metavariable is consitent - up to relocation via the relocation list l - + with the actual context *) and check_metasenv_consistency term context canonical_context l = match l with | shift, NCic.Irl n -> @@ -2586,16 +852,16 @@ end; | (_,C.Def (_,t1)), (_,C.Decl t2) -> if not (R.are_convertible ~subst ~metasenv tl t1 t2) then raise - (TypeCheckerFailure - (lazy (Printf.sprintf + (TypeCheckerFailure + (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "%s expected, which is not convertible with %s") (NCicPp.ppterm term) (NCicPp.ppterm t2) (NCicPp.ppterm t1) ))) | _,_ -> raise - (TypeCheckerFailure - (lazy (Printf.sprintf + (TypeCheckerFailure + (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "a definition expected, but a declaration found") (NCicPp.ppterm term))))); @@ -2615,7 +881,7 @@ end; S.subst_meta l (S.lift i ty)))::(lift_metas (i+1) tl) in lift_metas 1 canonical_context in - let l = NCicUtils.expand_local_context lc_kind in + let l = U.expand_local_context lc_kind in try List.iter2 (fun t ct -> @@ -2638,122 +904,331 @@ end; if not (R.are_convertible ~subst ~metasenv context optimized_t ct) then raise - (TypeCheckerFailure - (lazy (Printf.sprintf + (TypeCheckerFailure + (lazy (Printf.sprintf ("Not well typed metavariable local context: " ^^ "expected a term convertible with %s, found %s") (NCicPp.ppterm ct) (NCicPp.ppterm t)))) | t, (_,C.Decl ct) -> let type_t = typeof_aux context t in - if not (R.are_convertible ~subst ~metasenv context type_t ct) then + if not (R.are_convertible ~subst ~metasenv context type_t ct) then raise (TypeCheckerFailure - (lazy (Printf.sprintf - ("Not well typed metavariable local context: "^^ - "expected a term of type %s, found %s of type %s") - (NCicPp.ppterm ct) (NCicPp.ppterm t) (NCicPp.ppterm type_t)))) + (lazy (Printf.sprintf + ("Not well typed metavariable local context: "^^ + "expected a term of type %s, found %s of type %s") + (NCicPp.ppterm ct) (NCicPp.ppterm t) (NCicPp.ppterm type_t)))) ) l lifted_canonical_context with Invalid_argument _ -> raise (AssertFailure (lazy (Printf.sprintf "Local and canonical context %s have different lengths" (NCicPp.ppterm term)))) + + and is_non_informative context paramsno c = + let rec aux context c = + match R.whd context c with + | C.Prod (n,so,de) -> + let s = typeof_aux context so in + s = C.Sort C.Prop && aux ((n,(C.Decl so))::context) de + | _ -> true in + let context',dx = split_prods ~subst:[] context paramsno c in + aux context' dx + + and check_allowed_sort_elimination ~subst ~metasenv r = + let mkapp he arg = + match he with + | C.Appl l -> C.Appl (l @ [arg]) + | t -> C.Appl [t;arg] in + let rec aux context ind arity1 arity2 = + let arity1 = R.whd ~subst context arity1 in + let arity2 = R.whd ~subst context arity2 in + match arity1,arity2 with + | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> + R.are_convertible ~subst ~metasenv context so1 so2 && + aux ((name, C.Decl so1)::context) + (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 + | C.Sort _, C.Prod (name,so,ta) -> + (R.are_convertible ~subst ~metasenv context so ind && + match arity1,ta with + | (C.Sort (C.CProp | C.Type _), C.Sort _) + | (C.Sort C.Prop, C.Sort C.Prop) -> true + | (C.Sort C.Prop, C.Sort (C.CProp | C.Type _)) -> + let inductive,leftno,itl,_,i = E.get_checked_indtys r in + let itl_len = List.length itl in + let _,name,ty,cl = List.nth itl i in + let cl_len = List.length cl in + (* is it a singleton or empty non recursive and non informative + definition? *) + cl_len = 0 || + (itl_len = 1 && cl_len = 1 && + is_non_informative [name,C.Decl ty] leftno + (let _,_,x = List.nth cl 0 in x)) + | _,_ -> false) + | _,_ -> false + in + aux + in typeof_aux context term -and type_of_constant ref = assert false +and check_mutual_inductive_defs _ = () + +and eat_lambdas ~subst context n te = + match (n, R.whd ~subst context te) with + | (0, _) -> (te, context) + | (n, C.Lambda (name,so,ta)) when n > 0 -> + eat_lambdas ~subst ((name,(C.Decl so))::context) (n - 1) ta + | (n, te) -> + raise (AssertFailure + (lazy (Printf.sprintf "9 (%d, %s)" n (NCicPp.ppterm te)))) + +and guarded_by_destructors ~subst context recfuns t = + let recursor f k t = NCicUtils.fold shift_k k (fun k () -> f k) () t in + let rec aux (context, recfuns, x, safes as k) = function + | C.Rel m when List.mem_assoc m recfuns -> raise NotGuarded + | C.Rel m -> + (match List.nth context (m-1) with + | _,C.Decl _ -> () + | _,C.Def (bo,_) -> aux (context, recfuns, x, safes) (S.lift m bo)) + | C.Meta _ -> () + | C.Appl ((C.Rel m)::tl) when List.mem_assoc m recfuns -> + let rec_no = List.assoc m recfuns in + if not (List.length tl > rec_no) then raise NotGuarded + else + let rec_arg = List.nth tl rec_no in + if not (is_really_smaller ~subst k rec_arg) then raise + NotGuarded; + List.iter (aux k) tl + | C.Match (Ref.Ref (_,uri,_) as ref,outtype,term,pl) as t -> + (match R.whd ~subst context term with + | C.Rel m | C.Appl (C.Rel m :: _ ) as t when List.mem m safes || m = x -> + let isinductive, paramsno, tl, _, i = E.get_checked_indtys ref in + if not isinductive then recursor aux k t + else + let c_ctx,len,cl = fix_lefts_in_constrs ~subst uri paramsno tl i in + let args = match t with C.Appl (_::tl) -> tl | _ -> [] in + aux k outtype; + List.iter (aux k) args; + List.iter2 + (fun p (_,_,bruijnedc) -> + let rl = recursive_args ~subst c_ctx 0 len bruijnedc in + let p, k = get_new_safes ~subst k p rl in + aux k p) + pl cl + | _ -> recursor aux k t) + | t -> recursor aux k t + in + try aux (context, recfuns, 1, []) t;true + with NotGuarded -> false + (* - | C.Fix (i,fl) -> - let types,kl,ugraph1,len = + | C.Fix (_, fl) -> + let len = List.length fl in + let n_plus_len = n + len + and nn_plus_len = nn + len + and x_plus_len = x + len + and tys,_ = + List.fold_left + (fun (types,len) (n,_,ty,_) -> + (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, + len+1) + ) ([],0) fl + and safes' = List.map (fun x -> x + len) safes in + List.fold_right + (fun (_,_,ty,bo) i -> + i && guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && + guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl + x_plus_len safes' bo + ) fl true + | C.CoFix (_, fl) -> + let len = List.length fl in + let n_plus_len = n + len + and nn_plus_len = nn + len + and x_plus_len = x + len + and tys,_ = + List.fold_left + (fun (types,len) (n,ty,_) -> + (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, + len+1) + ) ([],0) fl + and safes' = List.map (fun x -> x + len) safes in + List.fold_right + (fun (_,ty,bo) i -> + i && + guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && + guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl + x_plus_len safes' bo + ) fl true +*) + +and guarded_by_constructors ~subst _ _ _ _ _ _ _ = assert false + +and recursive_args ~subst context n nn te = + match R.whd context te with + | C.Rel _ -> [] + | C.Prod (name,so,de) -> + (not (does_not_occur ~subst context n nn so)) :: + (recursive_args ~subst ((name,(C.Decl so))::context) (n+1) (nn + 1) de) + | _ -> raise (AssertFailure (lazy ("recursive_args"))) + +and get_new_safes ~subst (context, recfuns, x, safes as k) p rl = + match R.whd ~subst context p, rl with + | C.Lambda (name,so,ta), b::tl -> + let safes = (if b then [0] else []) @ safes in + get_new_safes ~subst + (shift_k (name,(C.Decl so)) (context, recfuns, x, safes)) ta tl + | C.Meta _ as e, _ | e, [] -> e, k + | _ -> raise (AssertFailure (lazy "Ill formed pattern")) + +and split_prods ~subst context n te = + match n, R.whd ~subst context te with + | 0, _ -> context,te + | n, C.Prod (name,so,ta) when n > 0 -> + split_prods ~subst ((name,(C.Decl so))::context) (n - 1) ta + | _ -> raise (AssertFailure (lazy "split_prods")) + +and is_really_smaller ~subst (context, recfuns, x, safes as k) te = + match R.whd ~subst context te with + | C.Rel m when List.mem m safes -> true + | C.Rel _ -> false + | C.LetIn _ -> raise (AssertFailure (lazy "letin after whd")) + | C.Sort _ | C.Implicit _ | C.Prod _ | C.Lambda _ + | C.Const (Ref.Ref (_,_,(Ref.Decl | Ref.Def | Ref.Ind _ | Ref.CoFix _))) -> + raise (AssertFailure (lazy "not a constructor")) + | C.Appl ([]|[_]) -> raise (AssertFailure (lazy "empty/unary appl")) + | C.Appl (he::_) -> + (*CSC: sulla coda ci vogliono dei controlli? secondo noi no, ma *) + (*CSC: solo perche' non abbiamo trovato controesempi *) + (*TASSI: da capire soprattutto se he è un altro fix che non ha ridotto...*) + is_really_smaller ~subst k he + | C.Const (Ref.Ref (_,_,Ref.Con _)) -> false + | C.Const (Ref.Ref (_,_,Ref.Fix _)) -> assert false + (*| C.Fix (_, fl) -> + let len = List.length fl in + let n_plus_len = n + len + and nn_plus_len = nn + len + and x_plus_len = x + len + and tys,_ = List.fold_left - (fun (types,kl,ugraph,len) (n,k,ty,_) -> - let _,ugraph1 = type_of_aux ~logger context ty ugraph in + (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, - k::kl,ugraph1,len+1) - ) ([],[],ugraph,0) fl + len+1) + ) ([],0) fl + and safes' = List.map (fun x -> x + len) safes in + List.fold_right + (fun (_,_,ty,bo) i -> + i && + is_really_smaller ~subst (tys@context) n_plus_len nn_plus_len kl + x_plus_len safes' bo + ) fl true*) + | C.Meta _ -> + true (* XXX if this check is repeated when the user completes the + definition *) + | C.Match (Ref.Ref (_,uri,_) as ref,outtype,term,pl) -> + (match term with + | C.Rel m | C.Appl (C.Rel m :: _ ) when List.mem m safes || m = x -> + let isinductive, paramsno, tl, _, i = E.get_checked_indtys ref in + if not isinductive then + List.for_all (is_really_smaller ~subst k) pl + else + let c_ctx,len,cl = fix_lefts_in_constrs ~subst uri paramsno tl i in + List.for_all2 + (fun p (_,_,debruijnedte) -> + let rl' = recursive_args ~subst c_ctx 0 len debruijnedte in + let e, k = get_new_safes ~subst k p rl' in + is_really_smaller ~subst k e) + pl cl + | _ -> List.for_all (is_really_smaller ~subst k) pl) + +and returns_a_coinductive ~subst context ty = + match R.whd ~subst context ty with + | C.Const (Ref.Ref (_,uri,Ref.Ind _) as ref) + | C.Appl (C.Const (Ref.Ref (_,uri,Ref.Ind _) as ref)::_) -> + let isinductive, _, _, _, _ = E.get_checked_indtys ref in + if isinductive then None else (Some uri) + | C.Prod (n,so,de) -> + returns_a_coinductive ~subst ((n,C.Decl so)::context) de + | _ -> None + +and type_of_constant ((Ref.Ref (_,uri,_)) as ref) = + let cobj = + match E.get_obj uri with + | true, cobj -> cobj + | false, uobj -> + !logger (`Start_type_checking uri); + check_obj_well_typed uobj; + E.add_obj uobj; + !logger (`Type_checking_completed uri); + if not (fst (E.get_obj uri)) then + raise (AssertFailure (lazy "environment error")); + uobj + in + match cobj, ref with + | (_,_,_,_,C.Inductive (_,_,tl,_)), Ref.Ref (_,_,Ref.Ind i) -> + let _,_,arity,_ = List.nth tl i in arity + | (_,_,_,_,C.Inductive (_,_,tl,_)), Ref.Ref (_,_,Ref.Con (i,j)) -> + let _,_,_,cl = List.nth tl i in + let _,_,arity = List.nth cl (j-1) in + arity + | (_,_,_,_,C.Fixpoint (_,fl,_)), Ref.Ref (_,_,(Ref.Fix (i,_)|Ref.CoFix i)) -> + let _,_,_,arity,_ = List.nth fl i in + arity + | (_,_,_,_,C.Constant (_,_,_,ty,_)), Ref.Ref (_,_,(Ref.Def |Ref.Decl)) -> ty + | _ -> raise (AssertFailure (lazy "type_of_constant: environment/reference")) + +and check_obj_well_typed (uri,height,metasenv,subst,kind) = + (* CSC: here we should typecheck the metasenv and the subst *) + assert (metasenv = [] && subst = []); + match kind with + | C.Constant (_,_,Some te,ty,_) -> + prerr_endline ("TY: " ^ NCicPp.ppterm ty); + prerr_endline ("BO: " ^ NCicPp.ppterm te); + let _ = typeof ~subst ~metasenv [] ty in + let ty_te = typeof ~subst ~metasenv [] te in + prerr_endline "XXXX"; + if not (R.are_convertible ~subst ~metasenv [] ty_te ty) then + raise (TypeCheckerFailure (lazy (Printf.sprintf + "the type of the body is not the one expected:\n%s\nvs\n%s" + (NCicPp.ppterm ty_te) (NCicPp.ppterm ty)))) + | C.Constant (_,_,None,ty,_) -> ignore (typeof ~subst ~metasenv [] ty) + | C.Inductive _ as obj -> check_mutual_inductive_defs obj + | C.Fixpoint (inductive,fl,_) -> + let types,kl,len = + List.fold_left + (fun (types,kl,len) (_,name,k,ty,_) -> + let _ = typeof ~subst ~metasenv [] ty in + ((name,(C.Decl (S.lift len ty)))::types, k::kl,len+1) + ) ([],[],0) fl in - let ugraph2 = - List.fold_left - (fun ugraph (name,x,ty,bo) -> - let ty_bo,ugraph1 = - type_of_aux ~logger (types@context) bo ugraph - in - let b,ugraph2 = - R.are_convertible ~subst ~metasenv (types@context) - ty_bo (CicSubstitution.lift len ty) ugraph1 in - if b then - begin - let (m, eaten, context') = - eat_lambdas ~subst (types @ context) (x + 1) bo - in - (* - let's control the guarded by - destructors conditions D{f,k,x,M} - *) - if not (guarded_by_destructors ~subst context' eaten - (len + eaten) kl 1 [] m) then - raise - (TypeCheckerFailure - (lazy ("Fix: not guarded by destructors"))) - else - ugraph2 - end - else - raise (TypeCheckerFailure (lazy ("Fix: ill-typed bodies"))) - ) ugraph1 fl in - (*CSC: controlli mancanti solo su D{f,k,x,M} *) - let (_,_,ty,_) = List.nth fl i in - ty,ugraph2 - | C.CoFix (i,fl) -> - let types,ugraph1,len = - List.fold_left - (fun (l,ugraph,len) (n,ty,_) -> - let _,ugraph1 = - type_of_aux ~logger context ty ugraph in - (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::l, - ugraph1,len+1) - ) ([],ugraph,0) fl - in - let ugraph2 = - List.fold_left - (fun ugraph (_,ty,bo) -> - let ty_bo,ugraph1 = - type_of_aux ~logger (types @ context) bo ugraph - in - let b,ugraph2 = - R.are_convertible ~subst ~metasenv (types @ context) ty_bo - (CicSubstitution.lift len ty) ugraph1 - in - if b then - begin - (* let's control that the returned type is coinductive *) - match returns_a_coinductive ~subst context ty with - None -> - raise - (TypeCheckerFailure - (lazy "CoFix: does not return a coinductive type")) - | Some uri -> - (* - let's control the guarded by constructors - conditions C{f,M} - *) - if not (guarded_by_constructors ~subst - (types @ context) 0 len false bo [] uri) then - raise - (TypeCheckerFailure - (lazy "CoFix: not guarded by constructors")) - else - ugraph2 - end - else - raise - (TypeCheckerFailure (lazy "CoFix: ill-typed bodies")) - ) ugraph1 fl - in - let (_,ty,_) = List.nth fl i in - ty,ugraph2 + List.iter (fun (_,name,x,ty,bo) -> + let bo = debruijn uri len bo in + let ty_bo = typeof ~subst ~metasenv types bo in + if not (R.are_convertible ~subst ~metasenv types ty_bo (S.lift len ty)) + then raise (TypeCheckerFailure (lazy ("(Co)Fix: ill-typed bodies"))) + else + if inductive then begin + let m, context = eat_lambdas ~subst types (x + 1) bo in + (* guarded by destructors conditions D{f,k,x,M} *) + let rec enum_from k = + function [] -> [] | v::tl -> (k,v)::enum_from (k+1) tl + in + if not (guarded_by_destructors + ~subst context (enum_from (x+1) kl) m) then + raise(TypeCheckerFailure(lazy("Fix: not guarded by destructors"))) + end else + match returns_a_coinductive ~subst [] ty with + | None -> + raise (TypeCheckerFailure + (lazy "CoFix: does not return a coinductive type")) + | Some uri -> + (* guarded by constructors conditions C{f,M} *) + if not (guarded_by_constructors ~subst + types 0 len false bo [] uri) + then + raise (TypeCheckerFailure + (lazy "CoFix: not guarded by constructors")) + ) fl -*) -;; +let typecheck_obj = check_obj_well_typed;; -(* typechecks the object, raising an exception if illtyped *) -let typecheck_obj obj = match obj with _ -> () +(* EOF *)