X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Fng_kernel%2FnCicTypeChecker.ml;h=cf445a8f0fc28d0d562238ecc053fd719186527c;hb=a89360d64f1fcbba917ad743b97a2d973ecf6db2;hp=598ed2a67c5b857072506292391d9594f461a01f;hpb=2504ca66a90b91fb28a3d63d30621ccda4857826;p=helm.git diff --git a/helm/software/components/ng_kernel/nCicTypeChecker.ml b/helm/software/components/ng_kernel/nCicTypeChecker.ml index 598ed2a67..cf445a8f0 100644 --- a/helm/software/components/ng_kernel/nCicTypeChecker.ml +++ b/helm/software/components/ng_kernel/nCicTypeChecker.ml @@ -138,40 +138,6 @@ let sort_of_prod ~metasenv ~subst context (name,s) (t1, t2) = (PP.ppterm ~subst ~metasenv ~context t2)))) ;; -let eat_prods ~subst ~metasenv context he ty_he args_with_ty = - let rec aux ty_he = function - | [] -> ty_he - | (arg, ty_arg)::tl -> - match R.whd ~subst context ty_he with - | C.Prod (_,s,t) -> - if R.are_convertible ~subst context ty_arg s then - aux (S.subst ~avoid_beta_redexes:true arg t) tl - else - raise - (TypeCheckerFailure - (lazy (Printf.sprintf - ("Appl: wrong application of %s: the parameter %s has type"^^ - "\n%s\nbut it should have type \n%s\nContext:\n%s\n") - (PP.ppterm ~subst ~metasenv ~context he) - (PP.ppterm ~subst ~metasenv ~context arg) - (PP.ppterm ~subst ~metasenv ~context ty_arg) - (PP.ppterm ~subst ~metasenv ~context s) - (PP.ppcontext ~subst ~metasenv context)))) - | _ -> - raise - (TypeCheckerFailure - (lazy (Printf.sprintf - "Appl: %s is not a function, it cannot be applied" - (PP.ppterm ~subst ~metasenv ~context - (let res = List.length tl in - let eaten = List.length args_with_ty - res in - (C.Appl - (he::List.map fst - (fst (HExtlib.split_nth eaten args_with_ty))))))))) - in - aux ty_he args_with_ty -;; - (* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) (* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) let rec instantiate_parameters params c = @@ -258,50 +224,73 @@ let rec eat_or_subst_lambdas | (_, te, _, _) -> te, k ;; +let check_homogeneous_call ~subst context indparamsno n uri reduct tl = + let last = + List.fold_left + (fun k x -> + if k = 0 then 0 + else + match R.whd context x with + | C.Rel m when m = n - (indparamsno - k) -> k - 1 + | _ -> raise (TypeCheckerFailure (lazy + ("Argument "^string_of_int (indparamsno - k + 1) ^ " (of " ^ + string_of_int indparamsno ^ " fixed) is not homogeneous in "^ + "appl:\n"^ PP.ppterm ~context ~subst ~metasenv:[] reduct)))) + indparamsno tl + in + if last <> 0 then + raise (TypeCheckerFailure + (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ + NUri.string_of_uri uri))) +;; -(*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) -(*CSC questa funzione e' simile alla are_all_occurrences_positive, ma fa *) -(*CSC dei controlli leggermente diversi. Viene invocata solamente dalla *) -(*CSC strictly_positive *) -(*CSC definizione (giusta???) tratta dalla mail di Hugo ;-) *) -let rec weakly_positive ~subst context n nn uri te = -(*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) +(* Inductive types being checked for positivity have *) +(* indexes x s.t. n < x <= nn. *) +let rec weakly_positive ~subst context n nn uri indparamsno posuri te = + (*CSC: Not very nice. *) let dummy = C.Sort C.Prop in - (*CSC: mettere in cicSubstitution *) + (*CSC: to be moved in cicSubstitution? *) let rec subst_inductive_type_with_dummy _ = function | C.Const (Ref.Ref (uri',Ref.Ind (true,0,_))) when NUri.eq uri' uri -> dummy - | C.Appl ((C.Const (Ref.Ref (uri',Ref.Ind (true,0,_))))::_) - when NUri.eq uri' uri -> dummy + | C.Appl ((C.Const (Ref.Ref (uri',Ref.Ind (true,0,lno))))::tl) + when NUri.eq uri' uri -> + let _, rargs = HExtlib.split_nth lno tl in + if rargs = [] then dummy else C.Appl (dummy :: rargs) | t -> U.map (fun _ x->x) () subst_inductive_type_with_dummy t in - match R.whd context te with - | C.Const (Ref.Ref (uri',Ref.Ind _)) - | C.Appl ((C.Const (Ref.Ref (uri',Ref.Ind _)))::_) - when NUri.eq uri' uri -> true - | C.Prod (name,source,dest) when - does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> - (* dummy abstraction, so we behave as in the anonimous case *) - strictly_positive ~subst context n nn - (subst_inductive_type_with_dummy () source) && - weakly_positive ~subst ((name,C.Decl source)::context) - (n + 1) (nn + 1) uri dest - | C.Prod (name,source,dest) -> - does_not_occur ~subst context n nn - (subst_inductive_type_with_dummy () source)&& - weakly_positive ~subst ((name,C.Decl source)::context) - (n + 1) (nn + 1) uri dest - | _ -> - raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) + (* this function has the same semantics of are_all_occurrences_positive + but the i-th context entry role is played by dummy and some checks + are skipped because we already know that are_all_occurrences_positive + of uri in te. *) + let rec aux context n nn te = + match R.whd context te with + | t when t = dummy -> true + | C.Appl (te::rargs) when te = dummy -> + List.for_all (does_not_occur ~subst context n nn) rargs + | C.Prod (name,source,dest) when + does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> + (* dummy abstraction, so we behave as in the anonimous case *) + strictly_positive ~subst context n nn indparamsno posuri source && + aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest + | C.Prod (name,source,dest) -> + does_not_occur ~subst context n nn source && + aux ((name,C.Decl source)::context) (n + 1) (nn + 1) dest + | _ -> + raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) + in + aux context n nn (subst_inductive_type_with_dummy () te) -and strictly_positive ~subst context n nn te = +and strictly_positive ~subst context n nn indparamsno posuri te = match R.whd context te with | t when does_not_occur ~subst context n nn t -> true - | C.Rel _ -> true + | C.Rel _ when indparamsno = 0 -> true + | C.Appl ((C.Rel m)::tl) as reduct when m > n && m <= nn -> + check_homogeneous_call ~subst context indparamsno n posuri reduct tl; + List.for_all (does_not_occur ~subst context n nn) tl | C.Prod (name,so,ta) -> does_not_occur ~subst context n nn so && - strictly_positive ~subst ((name,C.Decl so)::context) (n+1) (nn+1) ta - | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> - List.for_all (does_not_occur ~subst context n nn) tl + strictly_positive ~subst ((name,C.Decl so)::context) (n+1) (nn+1) + indparamsno posuri ta | C.Appl (C.Const (Ref.Ref (uri,Ref.Ind _) as r)::tl) -> let _,paramsno,tyl,_,i = E.get_checked_indtys r in let _,name,ity,cl = List.nth tyl i in @@ -314,32 +303,16 @@ and strictly_positive ~subst context n nn te = ok && List.for_all (does_not_occur ~subst context n nn) arguments && List.for_all - (weakly_positive ~subst ((name,C.Decl ity)::context) (n+1) (nn+1) uri) cl + (weakly_positive ~subst ((name,C.Decl ity)::context) (n+1) (nn+1) + uri indparamsno posuri) cl | _ -> false (* the inductive type indexes are s.t. n < x <= nn *) and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = match R.whd context te with | C.Appl ((C.Rel m)::tl) as reduct when m = i -> - let last = - List.fold_left - (fun k x -> - if k = 0 then 0 - else - match R.whd context x with - | C.Rel m when m = n - (indparamsno - k) -> k - 1 - | _ -> raise (TypeCheckerFailure (lazy - ("Argument "^string_of_int (indparamsno - k + 1) ^ " (of " ^ - string_of_int indparamsno ^ " fixed) is not homogeneous in "^ - "appl:\n"^ PP.ppterm ~context ~subst ~metasenv:[] reduct)))) - indparamsno tl - in - if last = 0 then - List.for_all (does_not_occur ~subst context n nn) tl - else - raise (TypeCheckerFailure - (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ - NUri.string_of_uri uri))) + check_homogeneous_call ~subst context indparamsno n uri reduct tl; + List.for_all (does_not_occur ~subst context n nn) tl | C.Rel m when m = i -> if indparamsno = 0 then true @@ -347,9 +320,9 @@ and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ NUri.string_of_uri uri))) - | C.Prod (name,source,dest) when + | C.Prod (name,source,dest) when does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> - strictly_positive ~subst context n nn source && + strictly_positive ~subst context n nn indparamsno uri source && are_all_occurrences_positive ~subst ((name,C.Decl source)::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest @@ -360,7 +333,6 @@ and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = are_all_occurrences_positive ~subst ((name,C.Decl source)::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | _ -> -prerr_endline ("MM: " ^ NCicPp.ppterm ~subst ~metasenv:[] ~context te); raise (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ (NUri.string_of_uri uri)))) @@ -417,7 +389,7 @@ let rec typeof ~subst ~metasenv context term = | C.LetIn (n,ty,t,bo) -> let ty_t = typeof_aux context t in let _ = typeof_aux context ty in - if not (R.are_convertible ~subst context ty_t ty) then + if not (R.are_convertible ~subst get_relevance context ty_t ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf @@ -488,7 +460,7 @@ let rec typeof ~subst ~metasenv context term = let ty_branch = type_of_branch ~subst context leftno outtype cons ty_cons 0 in - j+1, R.are_convertible ~subst context ty_p ty_branch, + j+1, R.are_convertible ~subst get_relevance context ty_p ty_branch, ty_p, ty_branch else j,false,old_p_ty,old_exp_p_ty @@ -550,7 +522,7 @@ let rec typeof ~subst ~metasenv context term = (_,C.Decl t1), (_,C.Decl t2) | (_,C.Def (t1,_)), (_,C.Def (t2,_)) | (_,C.Def (_,t1)), (_,C.Decl t2) -> - if not (R.are_convertible ~subst tl t1 t2) then + if not (R.are_convertible ~subst get_relevance tl t1 t2) then raise (TypeCheckerFailure (lazy (Printf.sprintf @@ -601,7 +573,7 @@ let rec typeof ~subst ~metasenv context term = with Failure _ -> t) | _ -> t in - if not (R.are_convertible ~subst context optimized_t ct) + if not (R.are_convertible ~subst get_relevance context optimized_t ct) then raise (TypeCheckerFailure @@ -612,7 +584,7 @@ let rec typeof ~subst ~metasenv context term = (PP.ppterm ~subst ~metasenv ~context t)))) | t, (_,C.Decl ct) -> let type_t = typeof_aux context t in - if not (R.are_convertible ~subst context type_t ct) then + if not (R.are_convertible ~subst get_relevance context type_t ct) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context: "^^ @@ -637,7 +609,7 @@ let rec typeof ~subst ~metasenv context term = let arity2 = R.whd ~subst context arity2 in match arity1,arity2 with | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> - if not (R.are_convertible ~subst context so1 so2) then + if not (R.are_convertible ~subst get_relevance context so1 so2) then raise (TypeCheckerFailure (lazy (Printf.sprintf "In outtype: expected %s, found %s" (PP.ppterm ~subst ~metasenv ~context so1) @@ -646,7 +618,7 @@ let rec typeof ~subst ~metasenv context term = aux ((name, C.Decl so1)::context) (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 | C.Sort _, C.Prod (name,so,ta) -> - if not (R.are_convertible ~subst context so ind) then + if not (R.are_convertible ~subst get_relevance context so ind) then raise (TypeCheckerFailure (lazy (Printf.sprintf "In outtype: expected %s, found %s" (PP.ppterm ~subst ~metasenv ~context ind) @@ -660,15 +632,16 @@ let rec typeof ~subst ~metasenv context term = * have them already *) let _,leftno,itl,_,i = E.get_checked_indtys r in let itl_len = List.length itl in - let _,_,_,cl = List.nth itl i in + let _,itname,ittype,cl = List.nth itl i in let cl_len = List.length cl in - (* is it a singleton or empty non recursive and non informative - definition? *) + (* is it a singleton, non recursive and non informative + definition or an empty one? *) if not (cl_len = 0 || (itl_len = 1 && cl_len = 1 && - is_non_informative leftno - (let _,_,x = List.hd cl in x))) + let _,_,constrty = List.hd cl in + is_non_recursive_singleton r itname ittype constrty && + is_non_informative leftno constrty)) then raise (TypeCheckerFailure (lazy ("Sort elimination not allowed"))); @@ -680,6 +653,53 @@ let rec typeof ~subst ~metasenv context term = in typeof_aux context term +and eat_prods ~subst ~metasenv context he ty_he args_with_ty = + let rec aux ty_he = function + | [] -> ty_he + | (arg, ty_arg)::tl -> + match R.whd ~subst context ty_he with + | C.Prod (_,s,t) -> + if R.are_convertible ~subst get_relevance context ty_arg s then + aux (S.subst ~avoid_beta_redexes:true arg t) tl + else + raise + (TypeCheckerFailure + (lazy (Printf.sprintf + ("Appl: wrong application of %s: the parameter %s has type"^^ + "\n%s\nbut it should have type \n%s\nContext:\n%s\n") + (PP.ppterm ~subst ~metasenv ~context he) + (PP.ppterm ~subst ~metasenv ~context arg) + (PP.ppterm ~subst ~metasenv ~context ty_arg) + (PP.ppterm ~subst ~metasenv ~context s) + (PP.ppcontext ~subst ~metasenv context)))) + | _ -> + raise + (TypeCheckerFailure + (lazy (Printf.sprintf + "Appl: %s is not a function, it cannot be applied" + (PP.ppterm ~subst ~metasenv ~context + (let res = List.length tl in + let eaten = List.length args_with_ty - res in + (C.Appl + (he::List.map fst + (fst (HExtlib.split_nth eaten args_with_ty))))))))) + in + aux ty_he args_with_ty + +and is_non_recursive_singleton (Ref.Ref (uri,_)) iname ity cty = + let ctx = [iname, C.Decl ity] in + let cty = debruijn uri 1 [] cty in + let len = List.length ctx in + let rec aux ctx n nn t = + match R.whd ctx t with + | C.Prod (name, src, tgt) -> + does_not_occur ~subst:[] ctx n nn src && + aux ((name, C.Decl src) :: ctx) (n+1) (nn+1) tgt + | C.Rel k | C.Appl (C.Rel k :: _) when k = nn -> true + | _ -> assert false + in + aux ctx (len-1) len cty + and is_non_informative paramsno c = let rec aux context c = match R.whd context c with @@ -690,7 +710,6 @@ and is_non_informative paramsno c = let context',dx = split_prods ~subst:[] [] paramsno c in aux context' dx - and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = (* let's check if the arity of the inductive types are well formed *) List.iter (fun (_,_,x,_) -> ignore (typeof ~subst ~metasenv [] x)) tyl; @@ -699,11 +718,12 @@ and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = let tys = List.rev_map (fun (_,n,ty,_) -> (n,(C.Decl ty))) tyl in ignore (List.fold_right - (fun (_,_,ty,cl) i -> + (fun (it_relev,_,ty,cl) i -> let context,ty_sort = split_prods ~subst [] ~-1 ty in let sx_context_ty_rev,_ = HExtlib.split_nth leftno (List.rev context) in List.iter - (fun (_,_,te) -> + (fun (k_relev,_,te) -> + let _,k_relev = HExtlib.split_nth leftno k_relev in let te = debruijn uri len [] te in let context,te = split_prods ~subst tys leftno te in let _,chopped_context_rev = @@ -716,11 +736,11 @@ and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = let convertible = match item1,item2 with (n1,C.Decl ty1),(n2,C.Decl ty2) -> - n1 = n2 && R.are_convertible ~subst context ty1 ty2 + n1 = n2 && R.are_convertible ~subst get_relevance context ty1 ty2 | (n1,C.Def (bo1,ty1)),(n2,C.Def (bo2,ty2)) -> n1 = n2 - && R.are_convertible ~subst context ty1 ty2 - && R.are_convertible ~subst context bo1 bo2 + && R.are_convertible ~subst get_relevance context ty1 ty2 + && R.are_convertible ~subst get_relevance context bo1 bo2 | _,_ -> false in if not convertible then @@ -754,11 +774,42 @@ and check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl = then raise (TypeCheckerFailure - (lazy ("Non positive occurence in "^NUri.string_of_uri uri)))) + (lazy ("Non positive occurence in "^NUri.string_of_uri + uri))) + else check_relevance ~subst ~metasenv context k_relev te) cl; - i + 1) + check_relevance ~subst ~metasenv [] it_relev ty; + i+1) tyl 1) +and check_relevance ~subst ~metasenv context relevance ty = + let error context ty = + raise (TypeCheckerFailure + (lazy ("Wrong relevance declaration: " ^ + String.concat "," (List.map string_of_bool relevance)^ + "\nfor type: "^PP.ppterm ~metasenv ~subst ~context ty))) + in + let rec aux context relevance ty = + match R.whd ~subst context ty with + | C.Prod (name,so,de) -> + let sort = typeof ~subst ~metasenv context so in + (match (relevance,R.whd ~subst context sort) with + | [],_ -> () + | false::tl,C.Sort C.Prop -> aux ((name,(C.Decl so))::context) tl de + | true::_,C.Sort C.Prop + | false::_,C.Sort _ + | false::_,C.Meta _ -> error context ty + | true::tl,C.Sort _ + | true::tl,C.Meta _ -> aux ((name,(C.Decl so))::context) tl de + | _ -> raise (AssertFailure (lazy (Printf.sprintf + "Prod: the type %s of the source of %s is not a sort" + (PP.ppterm ~subst ~metasenv ~context sort) + (PP.ppterm ~subst ~metasenv ~context so))))) + | _ -> (match relevance with + | [] -> () + | _::_ -> error context ty) + in aux context relevance ty + and guarded_by_destructors r_uri r_len ~subst ~metasenv context recfuns t = let recursor f k t = U.fold shift_k k (fun k () -> f k) () t in let rec aux (context, recfuns, x as k) t = @@ -907,8 +958,7 @@ and guarded_by_constructors ~subst ~metasenv context t indURI indlen nn = ("Too many args for constructor: " ^ String.concat " " (List.map (fun x-> PP.ppterm ~subst ~metasenv ~context x) args)))) in - let left, args = HExtlib.split_nth paramsno tl in - List.for_all (does_not_occur ~subst context n nn) left && + let _, args = HExtlib.split_nth paramsno tl in analyse_instantiated_type rec_params args | C.Appl ((C.Match (_,out,te,pl))::_) | C.Match (_,out,te,pl) as t -> @@ -917,6 +967,9 @@ and guarded_by_constructors ~subst ~metasenv context t indURI indlen nn = does_not_occur ~subst context n nn out && does_not_occur ~subst context n nn te && List.for_all (aux context n nn h) pl +(* IMPOSSIBLE unsless we allow to pass cofix to other fix/cofix as we do for + higher order fix in g_b_destructors. + | C.Const (Ref.Ref (u,(Ref.Fix _| Ref.CoFix _)) as ref) | C.Appl(C.Const (Ref.Ref(u,(Ref.Fix _| Ref.CoFix _)) as ref) :: _) as t -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in @@ -928,6 +981,7 @@ and guarded_by_constructors ~subst ~metasenv context t indURI indlen nn = (fun (_,_,_,_,bo) -> aux (context@tys) n nn h (debruijn u len context bo)) fl +*) | C.Const _ | C.Appl _ as t -> does_not_occur ~subst context n nn t in @@ -1020,6 +1074,40 @@ and type_of_constant ((Ref.Ref (uri,_)) as ref) = if h1 <> h2 then error (); ty | _ -> raise (AssertFailure (lazy "type_of_constant: environment/reference")) + +and get_relevance ~subst context t args = + let ty = typeof ~subst ~metasenv:[] context t in + let rec aux context ty = function + | [] -> [] + | arg::tl -> match R.whd ~subst context ty with + | C.Prod (_,so,de) -> + let sort = typeof ~subst ~metasenv:[] context so in + let new_ty = S.subst ~avoid_beta_redexes:true arg de in + (*prerr_endline ("so: " ^ PP.ppterm ~subst ~metasenv:[] + ~context so); + prerr_endline ("sort: " ^ PP.ppterm ~subst ~metasenv:[] + ~context sort);*) + (match R.whd ~subst context sort with + | C.Sort C.Prop -> + false::(aux context new_ty tl) + | C.Sort _ + | C.Meta _ -> true::(aux context new_ty tl) + | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf + "Prod: the type %s of the source of %s is not a sort" + (PP.ppterm ~subst ~metasenv:[] ~context sort) + (PP.ppterm ~subst ~metasenv:[] ~context so))))) + | _ -> + raise + (TypeCheckerFailure + (lazy (Printf.sprintf + "Appl: %s is not a function, it cannot be applied" + (PP.ppterm ~subst ~metasenv:[] ~context + (let res = List.length tl in + let eaten = List.length args - res in + (C.Appl + (t::fst + (HExtlib.split_nth eaten args)))))))) + in aux context ty args ;; let typecheck_context ~metasenv ~subst context = @@ -1032,7 +1120,7 @@ let typecheck_context ~metasenv ~subst context = | name,C.Def (te,ty) -> ignore (typeof ~metasenv ~subst:[] context ty); let ty' = typeof ~metasenv ~subst:[] context te in - if not (R.are_convertible ~subst context ty' ty) then + if not (R.are_convertible ~subst get_relevance context ty' ty) then raise (AssertFailure (lazy (Printf.sprintf ( "the type of the definiens for %s in the context is not "^^ "convertible with the declared one.\n"^^ @@ -1070,7 +1158,7 @@ let typecheck_subst ~metasenv subst = typecheck_context ~metasenv ~subst context; ignore (typeof ~metasenv ~subst context ty); let ty' = typeof ~metasenv ~subst context bo in - if not (R.are_convertible ~subst context ty' ty) then + if not (R.are_convertible ~subst get_relevance context ty' ty) then raise (AssertFailure (lazy (Printf.sprintf ( "the type of the definiens for %d in the substitution is not "^^ "convertible with the declared one.\n"^^ @@ -1082,67 +1170,6 @@ let typecheck_subst ~metasenv subst = ) [] subst) ;; -let check_rel1_irrelevant ~metasenv ~subst context = - let shift e (k, context) = k+1,e::context in - let rec aux (evil, context as k) () t = - match R.whd ~subst context t with - | C.Rel i when i = evil -> raise (TypeCheckerFailure (lazy (Printf.sprintf - "Argument %s declared as irrelevante is used in a relevant position" - (PP.ppterm ~subst ~metasenv ~context (C.Rel i))))) - | C.Meta _ -> () - | C.Lambda (name,so,tgt) -> - (* checking so is not needed since the implicit version of CC - * has untyped lambdas (curry style), see Barras and Bernardo *) - aux (shift (name,C.Decl so) k) () tgt - | C.Appl (C.Const ref::args) -> - let relevance = NCicEnvironment.get_relevance ref in - HExtlib.list_iter_default2 - (fun t -> function false -> () | _ -> aux k () t) - args true relevance - | C.Match (_, _, _, []) -> () - | C.Match (ref, _, t, [p]) -> - aux k () p; - let _,lno,itl,_,_ = E.get_checked_indtys ref in - let _,_,_,cl = List.hd itl in - let _,_,c = List.hd cl in - if not (is_non_informative lno c) then aux k () t - | C.Match (_, _, t, pl) -> List.iter (aux k ()) (t::pl) - | t -> U.fold shift k aux () t - in - aux (1, context) () - -let check_relevance ~metasenv ~subst ~in_type relevance = - let shift e (in_type, context, relevance) = - assert (relevance = []); in_type, e::context, relevance - in - let rec aux (in_type, context, relevance as k) () t = - match relevance, R.whd ~subst context t, in_type with - | _,C.Meta _,_ -> () - | true::tl,C.Lambda (name,so,t), false - | true::tl,C.Prod (name,so,t), true -> - aux (in_type, (name, C.Decl so)::context, tl) () t - | false::tl,C.Lambda (name,so,t), false - | false::tl,C.Prod (name,so,t), true -> - let context = (name, C.Decl so)::context in - check_rel1_irrelevant ~metasenv ~subst context t; - aux (in_type, context, tl) () t - | [], C.Match (ref,oty,t,pl), _ -> - aux k () t; - let _,lno,itl,_,i = E.get_checked_indtys ref in - let rel,_,_,cl = List.nth itl i in - let _, rel = HExtlib.split_nth lno rel in - aux (false, context, rel) () oty; - List.iter2 - (fun p (rel,_,_) -> - let _,rel = HExtlib.split_nth lno rel in - aux (false, context, rel) () p) - pl cl - | [],t,_ -> U.fold shift k aux () t - | _,_,_ -> - raise (TypeCheckerFailure (lazy "Wrong relevance declaration")) - in - aux (in_type, [], relevance) () -;; let typecheck_obj (uri,_height,metasenv,subst,kind) = (* height is not checked since it is only used to implement an optimization *) @@ -1152,17 +1179,17 @@ let typecheck_obj (uri,_height,metasenv,subst,kind) = | C.Constant (relevance,_,Some te,ty,_) -> let _ = typeof ~subst ~metasenv [] ty in let ty_te = typeof ~subst ~metasenv [] te in - if not (R.are_convertible ~subst [] ty_te ty) then + if not (R.are_convertible ~subst get_relevance [] ty_te ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf ( "the type of the body is not convertible with the declared one.\n"^^ "inferred type:\n%s\nexpected type:\n%s") (PP.ppterm ~subst ~metasenv ~context:[] ty_te) (PP.ppterm ~subst ~metasenv ~context:[] ty)))); - check_relevance ~in_type:true ~subst ~metasenv relevance ty; - check_relevance ~in_type:false ~subst ~metasenv relevance te + check_relevance ~subst ~metasenv [] relevance ty + (*check_relevance ~in_type:false ~subst ~metasenv relevance te*) | C.Constant (relevance,_,None,ty,_) -> ignore (typeof ~subst ~metasenv [] ty); - check_relevance ~in_type:true ~subst ~metasenv relevance ty + check_relevance ~subst ~metasenv [] relevance ty | C.Inductive (_, leftno, tyl, _) -> check_mutual_inductive_defs uri ~metasenv ~subst leftno tyl | C.Fixpoint (inductive,fl,_) -> @@ -1170,6 +1197,7 @@ let typecheck_obj (uri,_height,metasenv,subst,kind) = List.fold_left (fun (types,kl) (relevance,name,k,ty,_) -> let _ = typeof ~subst ~metasenv [] ty in + check_relevance ~subst ~metasenv [] relevance ty; ((name,C.Decl ty)::types, k::kl) ) ([],[]) fl in @@ -1183,7 +1211,7 @@ let typecheck_obj (uri,_height,metasenv,subst,kind) = in List.iter2 (fun (_,_,x,ty,_) bo -> let ty_bo = typeof ~subst ~metasenv types bo in - if not (R.are_convertible ~subst types ty_bo ty) + if not (R.are_convertible ~subst get_relevance types ty_bo ty) then raise (TypeCheckerFailure (lazy ("(Co)Fix: ill-typed bodies"))) else if inductive then begin