X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Fng_paramodulation%2Forderings.ml;h=b95593df253f1510a3cc80e6134073ebf4110eac;hb=1f6040cf168fe0cdcbe8b3c37904a2090d7083a0;hp=4e84c49b6250856ef5b00aa488bc1870f1a851d5;hpb=4aaab68e38ccafb352cc2b656e3ec3cf1ef33cab;p=helm.git diff --git a/helm/software/components/ng_paramodulation/orderings.ml b/helm/software/components/ng_paramodulation/orderings.ml index 4e84c49b6..b95593df2 100644 --- a/helm/software/components/ng_paramodulation/orderings.ml +++ b/helm/software/components/ng_paramodulation/orderings.ml @@ -11,232 +11,361 @@ (* $Id$ *) -(* (weight of constants, [(meta, weight_of_meta)]) *) -type weight = int * (int * int) list;; - -let string_of_weight (cw, mw) = - let s = - String.concat ", " - (List.map (function (m, w) -> Printf.sprintf "(%d,%d)" m w) mw) - in - Printf.sprintf "[%d; %s]" cw s -;; - -let weight_of_term term = - let vars_dict = Hashtbl.create 5 in - let rec aux = function - | Terms.Var i -> - (try - let oldw = Hashtbl.find vars_dict i in - Hashtbl.replace vars_dict i (oldw+1) - with Not_found -> - Hashtbl.add vars_dict i 1); - 0 - | Terms.Leaf _ -> 1 - | Terms.Node l -> List.fold_left (+) 0 (List.map aux l) - in - let w = aux term in - let l = - Hashtbl.fold (fun meta metaw resw -> (meta, metaw)::resw) vars_dict [] - in - let compare w1 w2 = - match w1, w2 with - | (m1, _), (m2, _) -> m2 - m1 - in - (w, List.sort compare l) (* from the biggest meta to the smallest (0) *) -;; - -let compute_clause_weight = assert false (* - let factor = 2 in - match o with - | Terms.Lt -> - let w, m = (weight_of_term - ~consider_metas:true ~count_metas_occurrences:false right) in - w + (factor * (List.length m)) ; - | Terms.Le -> assert false - | Terms.Gt -> - let w, m = (weight_of_term - ~consider_metas:true ~count_metas_occurrences:false left) in - w + (factor * (List.length m)) ; - | Terms.Ge -> assert false - | Terms.Eq - | Terms.Incomparable -> - let w1, m1 = (weight_of_term - ~consider_metas:true ~count_metas_occurrences:false right) in - let w2, m2 = (weight_of_term - ~consider_metas:true ~count_metas_occurrences:false left) in - w1 + w2 + (factor * (List.length m1)) + (factor * (List.length m2)) -*) -;; - -(* returns a "normalized" version of the polynomial weight wl (with type - * weight list), i.e. a list sorted ascending by meta number, - * from 0 to maxmeta. wl must be sorted descending by meta number. Example: - * normalize_weight 5 (3, [(3, 2); (1, 1)]) -> - * (3, [(1, 1); (2, 0); (3, 2); (4, 0); (5, 0)]) *) -let normalize_weight maxmeta (cw, wl) = - let rec aux = function - | 0 -> [] - | m -> (m, 0)::(aux (m-1)) - in - let tmpl = aux maxmeta in - let wl = - List.sort - (fun (m, _) (n, _) -> Pervasives.compare m n) - (List.fold_left - (fun res (m, w) -> (m, w)::(List.remove_assoc m res)) tmpl wl) - in - (cw, wl) -;; +type aux_comparison = XEQ | XLE | XGE | XLT | XGT | XINCOMPARABLE +module Orderings (B : Terms.Blob) = struct -let normalize_weights (cw1, wl1) (cw2, wl2) = - let rec aux wl1 wl2 = - match wl1, wl2 with - | [], [] -> [], [] - | (m, w)::tl1, (n, w')::tl2 when m = n -> - let res1, res2 = aux tl1 tl2 in - (m, w)::res1, (n, w')::res2 - | (m, w)::tl1, ((n, w')::_ as wl2) when m < n -> - let res1, res2 = aux tl1 wl2 in - (m, w)::res1, (m, 0)::res2 - | ((m, w)::_ as wl1), (n, w')::tl2 when m > n -> - let res1, res2 = aux wl1 tl2 in - (n, 0)::res1, (n, w')::res2 - | [], (n, w)::tl2 -> - let res1, res2 = aux [] tl2 in - (n, 0)::res1, (n, w)::res2 - | (m, w)::tl1, [] -> - let res1, res2 = aux tl1 [] in - (m, w)::res1, (m, 0)::res2 - | _, _ -> assert false - in - let cmp (m, _) (n, _) = compare m n in - let wl1, wl2 = aux (List.sort cmp wl1) (List.sort cmp wl2) in - (cw1, wl1), (cw2, wl2) -;; + type weight = int * (int * int) list;; + + let string_of_weight (cw, mw) = + let s = + String.concat ", " + (List.map (function (m, w) -> Printf.sprintf "(%d,%d)" m w) mw) + in + Printf.sprintf "[%d; %s]" cw s + ;; + + let weight_of_term term = + let vars_dict = Hashtbl.create 5 in + let rec aux = function + | Terms.Var i -> + (try + let oldw = Hashtbl.find vars_dict i in + Hashtbl.replace vars_dict i (oldw+1) + with Not_found -> + Hashtbl.add vars_dict i 1); + 0 + | Terms.Leaf _ -> 1 + | Terms.Node l -> List.fold_left (+) 0 (List.map aux l) + in + let w = aux term in + let l = + Hashtbl.fold (fun meta metaw resw -> (meta, metaw)::resw) vars_dict [] + in + let compare w1 w2 = + match w1, w2 with + | (m1, _), (m2, _) -> m1 - m2 + in + (w, List.sort compare l) (* from the smallest meta to the bigest *) + ;; + + let compute_unit_clause_weight (_,l, _, _) = + let weight_of_polynomial w m = + let factor = 2 in + w + factor * List.fold_left (fun acc (_,occ) -> acc+occ) 0 m + in + match l with + | Terms.Predicate t -> + let w, m = weight_of_term t in + weight_of_polynomial w m + | Terms.Equation (_,x,_,Terms.Lt) + | Terms.Equation (x,_,_,Terms.Gt) -> + let w, m = weight_of_term x in + weight_of_polynomial w m + | Terms.Equation (l,r,_,Terms.Eq) + | Terms.Equation (l,r,_,Terms.Incomparable) -> + let wl, ml = weight_of_term l in + let wr, mr = weight_of_term r in + weight_of_polynomial (wl+wr) (ml@mr) + ;; -(* Riazanov: 3.1.5 pag 38 *) -(* TODO: optimize early detection of Terms.Incomparable case *) -let compare_weights (h1, w1) (h2, w2) = - let res, diffs = - try - List.fold_left2 - (fun ((lt, eq, gt), diffs) w1 w2 -> - match w1, w2 with - | (meta1, w1), (meta2, w2) when meta1 = meta2 -> - let diffs = (w1 - w2) + diffs in - let r = compare w1 w2 in - if r < 0 then (lt+1, eq, gt), diffs - else if r = 0 then (lt, eq+1, gt), diffs - else (lt, eq, gt+1), diffs - | _ -> assert false) - ((0, 0, 0), 0) w1 w2 - with Invalid_argument _ -> assert false - in - let hdiff = h1 - h2 in - match res with - | (0, _, 0) -> - if hdiff < 0 then Terms.Lt - else if hdiff > 0 then Terms.Gt - else Terms.Eq - | (m, _, 0) -> - if hdiff <= 0 then Terms.Lt - else if (- diffs) >= hdiff then Terms.Le else Terms.Incomparable - | (0, _, m) -> - if hdiff >= 0 then Terms.Gt - else if diffs >= (- hdiff) then Terms.Ge else Terms.Incomparable - | (m, _, n) when m > 0 && n > 0 -> Terms.Incomparable - | _ -> assert false -;; +let compute_goal_weight (_,l, _, _) = + let weight_of_polynomial w m = + let factor = 2 in + w + factor * List.fold_left (fun acc (_,occ) -> acc+occ) 0 m + in + match l with + | Terms.Predicate t -> + let w, m = weight_of_term t in + weight_of_polynomial w m + | Terms.Equation (l,r,_,_) -> + let wl, ml = weight_of_term l in + let wr, mr = weight_of_term r in + let wl = weight_of_polynomial wl ml in + let wr = weight_of_polynomial wr mr in + - (abs (wl-wr)) + ;; + + (* Riazanov: 3.1.5 pag 38 *) +(* Compare weights normalized in a new way : + * Variables should be sorted from the lowest index to the highest + * Variables which do not occur in the term should not be present + * in the normalized polynomial + *) + let compare_weights (h1, w1) (h2, w2) = + let rec aux hdiff (lt, gt) diffs w1 w2 = + match w1, w2 with + | ((var1, w1)::tl1) as l1, (((var2, w2)::tl2) as l2) -> + if var1 = var2 then + let diffs = (w1 - w2) + diffs in + let r = compare w1 w2 in + let lt = lt or (r < 0) in + let gt = gt or (r > 0) in + if lt && gt then XINCOMPARABLE else + aux hdiff (lt, gt) diffs tl1 tl2 + else if var1 < var2 then + if lt then XINCOMPARABLE else + aux hdiff (false,true) (diffs+w1) tl1 l2 + else + if gt then XINCOMPARABLE else + aux hdiff (true,false) (diffs-w2) l1 tl2 + | [], (_,w2)::tl2 -> + if gt then XINCOMPARABLE else + aux hdiff (true,false) (diffs-w2) [] tl2 + | (_,w1)::tl1, [] -> + if lt then XINCOMPARABLE else + aux hdiff (false,true) (diffs+w1) tl1 [] + | [], [] -> + if lt then + if hdiff <= 0 then XLT + else if (- diffs) >= hdiff then XLE else XINCOMPARABLE + else if gt then + if hdiff >= 0 then XGT + else if diffs >= (- hdiff) then XGE else XINCOMPARABLE + else + if hdiff < 0 then XLT + else if hdiff > 0 then XGT + else XEQ + in + aux (h1-h2) (false,false) 0 w1 w2 + ;; + + (* Riazanov: p. 40, relation >>> + * if head_only=true then it is not >>> but helps case 2 of 3.14 p 39 *) + let rec aux_ordering ?(head_only=false) t1 t2 = + match t1, t2 with + (* We want to discard any identity equality. * + * If we give back XEQ, no inference rule * + * will be applied on this equality *) + | Terms.Var i, Terms.Var j when i = j -> + XEQ + (* 1. *) + | Terms.Var _, _ + | _, Terms.Var _ -> XINCOMPARABLE + (* 2.a *) + | Terms.Leaf a1, Terms.Leaf a2 -> + let cmp = B.compare a1 a2 in + if cmp = 0 then XEQ else if cmp < 0 then XLT else XGT + | Terms.Leaf _, Terms.Node _ -> XLT + | Terms.Node _, Terms.Leaf _ -> XGT + (* 2.b *) + | Terms.Node l1, Terms.Node l2 -> + let rec cmp t1 t2 = + match t1, t2 with + | [], [] -> XEQ + | _, [] -> XGT + | [], _ -> XLT + | hd1::tl1, hd2::tl2 -> + let o = aux_ordering ~head_only hd1 hd2 in + if o = XEQ && not head_only then cmp tl1 tl2 else o + in + cmp l1 l2 + ;; + + (* Riazanov: p. 40, relation >_n *) + let nonrec_kbo t1 t2 = + let w1 = weight_of_term t1 in + let w2 = weight_of_term t2 in + match compare_weights w1 w2 with + | XLE -> (* this is .> *) + if aux_ordering t1 t2 = XLT then XLT else XINCOMPARABLE + | XGE -> + if aux_ordering t1 t2 = XGT then XGT else XINCOMPARABLE + | XEQ -> aux_ordering t1 t2 + | res -> res + ;; + + (* Riazanov: p. 38, relation > *) + let rec kbo t1 t2 = + let aux = aux_ordering ~head_only:true in + let rec cmp t1 t2 = + match t1, t2 with + | [], [] -> XEQ + | _, [] -> XGT + | [], _ -> XLT + | hd1::tl1, hd2::tl2 -> + let o = kbo hd1 hd2 in + if o = XEQ then cmp tl1 tl2 + else o + in + let w1 = weight_of_term t1 in + let w2 = weight_of_term t2 in + let comparison = compare_weights w1 w2 in + match comparison with + | XLE -> + let r = aux t1 t2 in + if r = XLT then XLT + else if r = XEQ then ( + match t1, t2 with + | Terms.Node (_::tl1), Terms.Node (_::tl2) -> + if cmp tl1 tl2 = XLT then XLT else XINCOMPARABLE + | _, _ -> assert false + ) else XINCOMPARABLE + | XGE -> + let r = aux t1 t2 in + if r = XGT then XGT + else if r = XEQ then ( + match t1, t2 with + | Terms.Node (_::tl1), Terms.Node (_::tl2) -> + if cmp tl1 tl2 = XGT then XGT else XINCOMPARABLE + | _, _ -> assert false + ) else XINCOMPARABLE + | XEQ -> + let r = aux t1 t2 in + if r = XEQ then ( + match t1, t2 with + | Terms.Node (_::tl1), Terms.Node (_::tl2) -> cmp tl1 tl2 + | _, _ -> XINCOMPARABLE + ) else r + | res -> res + ;; + let rec lpo s t = + let cmp a1 a2 = + let res = B.compare a1 a2 in + if res = 0 then XEQ else if res < 0 then XLT else XGT + in + match s,t with + | s, t when s = t -> + XEQ + | Terms.Var _, Terms.Var _ -> + XINCOMPARABLE + | Terms.Leaf a1, Terms.Leaf a2 -> + cmp a1 a2 + | _, Terms.Var i -> + if (List.mem i (Terms.vars_of_term s)) then XGT + else XINCOMPARABLE + | Terms.Var _, _ -> + (*| Terms.Leaf _, Terms.Node _ -> *) + (match lpo t s with + | XGT -> XLT + | XLT -> XGT + | o -> o) + (*| Terms.Node (Terms.Leaf a1::tl), Terms.Leaf a2 -> + (match cmp a1 a2 with + | XGT -> XGT + | _ -> + if List.exists (fun x -> let o = lpo x t in o=XGT || o=XEQ) tl + then XGT + else XINCOMPARABLE)*) + | Terms.Node (hd1::tl1), Terms.Node (hd2::tl2) -> +(* let lo = List.map (lpo s) tl2 in + let ro = List.map (lpo t) tl1 in + if List.exists (fun x -> x=XGT || x=XEQ) lo + then XGT + else if List.exists (fun x -> x=XGT || x=XEQ) ro + then XLT + else begin + match lpo hd1 hd2 with + | XGT -> if List.for_all (fun x -> x=XGT) lo then XGT + else XINCOMPARABLE + | XLT -> if List.for_all (fun x -> x=XGT) ro then XLT + else XINCOMPARABLE + | XEQ -> List.fold_left2 + (fun acc si ti -> if acc = XEQ then lpo si ti else acc) + XEQ tl1 tl2 + | XINCOMPARABLE -> XINCOMPARABLE + | _ -> assert false + end*) + if List.exists (fun x -> let o = lpo x t in o=XGT || o=XEQ) tl1 + then XGT + else if List.exists (fun x -> let o=lpo s x in o=XLT || o=XEQ) tl2 + then XLT + else begin + match lpo hd1 hd2 with + | XGT -> if List.for_all (fun x -> lpo s x = XGT) tl2 then XGT + else XINCOMPARABLE + | XLT -> if List.for_all (fun x -> lpo x t = XLT) tl1 then XLT + else XINCOMPARABLE + | XEQ -> + let lex = List.fold_left2 + (fun acc si ti -> if acc = XEQ then lpo si ti else acc) + XEQ tl1 tl2 + in + (match lex with + | XGT -> + if List.for_all (fun x -> lpo s x = XGT) tl2 then XGT + else XINCOMPARABLE + | XLT -> + if List.for_all (fun x -> lpo x t = XLT) tl1 then XLT + else XINCOMPARABLE + | o -> o) + | XINCOMPARABLE -> XINCOMPARABLE + | _ -> assert false + end + | _,_ -> aux_ordering s t + + ;; -let rec aux_ordering t1 t2 = +let rec lpo_old t1 t2 = match t1, t2 with - | Terms.Var _, _ - | _, Terms.Var _ -> Terms.Incomparable - - | Terms.Leaf a1, Terms.Leaf a2 -> - let cmp = Pervasives.compare a1 a2 in - if cmp = 0 then Terms.Eq else if cmp < 0 then Terms.Lt else Terms.Gt - - | Terms.Leaf _, Terms.Node _ -> Terms.Lt - | Terms.Node _, Terms.Leaf _ -> Terms.Gt - - | Terms.Node l1, Terms.Node l2 -> - let rec cmp t1 t2 = - match t1, t2 with - | [], [] -> Terms.Eq - | _, [] -> Terms.Gt - | [], _ -> Terms.Lt - | hd1::tl1, hd2::tl2 -> - let o = aux_ordering hd1 hd2 in - if o = Terms.Eq then cmp tl1 tl2 - else o + | t1, t2 when t1 = t2 -> XEQ + | t1, (Terms.Var m) -> + if List.mem m (Terms.vars_of_term t1) then XGT else XINCOMPARABLE + | (Terms.Var m), t2 -> + if List.mem m (Terms.vars_of_term t2) then XLT else XINCOMPARABLE + | Terms.Node (hd1::tl1), Terms.Node (hd2::tl2) -> ( + let res = + let f o r t = + if r then true else + match lpo_old t o with + | XGT | XEQ -> true + | _ -> false + in + let res1 = List.fold_left (f t2) false tl1 in + if res1 then XGT + else let res2 = List.fold_left (f t1) false tl2 in + if res2 then XLT + else XINCOMPARABLE in - cmp l1 l2 -;; - -let nonrec_kbo t1 t2 = - let w1 = weight_of_term t1 in - let w2 = weight_of_term t2 in - let w1, w2 = normalize_weights w1 w2 in - match compare_weights w1 w2 with - | Terms.Le -> if aux_ordering t1 t2 = Terms.Lt then Terms.Lt else Terms.Incomparable - | Terms.Ge -> if aux_ordering t1 t2 = Terms.Gt then Terms.Gt else Terms.Incomparable - | Terms.Eq -> aux_ordering t1 t2 - | res -> res -;; - -(* -let rec kbo t1 t2 = - let aux = aux_ordering ~recursion:false in - let w1 = weight_of_term t1 - and w2 = weight_of_term t2 in - let rec cmp t1 t2 = - match t1, t2 with - | [], [] -> Terms.Eq - | _, [] -> Terms.Gt - | [], _ -> Terms.Lt - | hd1::tl1, hd2::tl2 -> - let o = - kbo hd1 hd2 + if res <> XINCOMPARABLE then + res + else + let f o r t = + if not r then false else + match lpo_old o t with + | XGT -> true + | _ -> false in - if o = Terms.Eq then cmp tl1 tl2 - else o - in - let w1, w2 = normalize_weights w1 w2 in - let comparison = compare_weights w1 w2 in - match comparison with - | Terms.Le -> - let r = aux t1 t2 in - if r = Terms.Lt then Terms.Lt - else if r = Terms.Eq then ( - match t1, t2 with - | Cic.Appl (h1::tl1), Cic.Appl (h2::tl2) when h1 = h2 -> - if cmp tl1 tl2 = Terms.Lt then Terms.Lt else Terms.Incomparable - | _, _ -> Terms.Incomparable - ) else Terms.Incomparable - | Terms.Ge -> - let r = aux t1 t2 in - if r = Terms.Gt then Terms.Gt - else if r = Terms.Eq then ( - match t1, t2 with - | Cic.Appl (h1::tl1), Cic.Appl (h2::tl2) when h1 = h2 -> - if cmp tl1 tl2 = Terms.Gt then Terms.Gt else Terms.Incomparable - | _, _ -> Terms.Incomparable - ) else Terms.Incomparable - | Terms.Eq -> - let r = aux t1 t2 in - if r = Terms.Eq then ( - match t1, t2 with - | Cic.Appl (h1::tl1), Cic.Appl (h2::tl2) when h1 = h2 -> - cmp tl1 tl2 - | _, _ -> Terms.Incomparable - ) else r - | res -> res + match aux_ordering hd1 hd2 with + | XGT -> + let res = List.fold_left (f t1) false tl2 in + if res then XGT + else XINCOMPARABLE + | XLT -> + let res = List.fold_left (f t2) false tl1 in + if res then XLT + else XINCOMPARABLE + | XEQ -> ( + let lex_res = + try + List.fold_left2 + (fun r t1 t2 -> if r <> XEQ then r else lpo_old t1 t2) + XEQ tl1 tl2 + with Invalid_argument _ -> + XINCOMPARABLE + in + match lex_res with + | XGT -> + if List.fold_left (f t1) false tl2 then XGT + else XINCOMPARABLE + | XLT -> + if List.fold_left (f t2) false tl1 then XLT + else XINCOMPARABLE + | _ -> XINCOMPARABLE + ) + | _ -> XINCOMPARABLE + ) + | t1, t2 -> aux_ordering t1 t2 ;; -*) - -let compare_terms = nonrec_kbo;; + let compare_terms x y = + match lpo_old x y with + | XINCOMPARABLE -> Terms.Incomparable + | XGT -> Terms.Gt + | XLT -> Terms.Lt + | XEQ -> Terms.Eq + | _ -> assert false + ;; + +end