X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Fng_paramodulation%2Fsuperposition.ml;h=bc4f651a449aa2663972ea2280def1cff3684515;hb=refs%2Fheads%2Fng_paramodulation_CNF;hp=600e204c850b44531e3d97ac90a699203db70542;hpb=3a4481e963c6b6e78ad1dce05d75bea992ceaaed;p=helm.git diff --git a/helm/software/components/ng_paramodulation/superposition.ml b/helm/software/components/ng_paramodulation/superposition.ml index 600e204c8..bc4f651a4 100644 --- a/helm/software/components/ng_paramodulation/superposition.ml +++ b/helm/software/components/ng_paramodulation/superposition.ml @@ -11,20 +11,21 @@ (* $Id: index.mli 9822 2009-06-03 15:37:06Z tassi $ *) -module Superposition (B : Terms.Blob) = +module Superposition (B : Orderings.Blob) = struct module IDX = Index.Index(B) - module Unif = FoUnif.Founif(B) - module Subst = FoSubst.Subst(B) - module Order = Orderings.Orderings(B) + module Unif = FoUnif.FoUnif(B) + module Subst = FoSubst + module Order = B module Utils = FoUtils.Utils(B) module Pp = Pp.Pp(B) + module Clauses = Clauses.Clauses(B) - exception Success of B.t Terms.bag * int * B.t Terms.unit_clause + exception Success of B.t Terms.bag * int * B.t Terms.clause - let debug s = - ()(* prerr_endline s *) - ;; + let debug s = prerr_endline (Lazy.force s);; + let debug _ = ();; + let enable = true;; let rec list_first f = function | [] -> None @@ -32,12 +33,16 @@ module Superposition (B : Terms.Blob) = ;; let first_position pos ctx t f = + let inject_pos pos ctx = function + | None -> None + | Some (a,b,c,d) -> Some(ctx a,b,c,d,pos) + in let rec aux pos ctx = function - | Terms.Leaf _ as t -> f t pos ctx + | Terms.Leaf _ as t -> inject_pos pos ctx (f t) | Terms.Var _ -> None - | Terms.Node l as t-> - match f t pos ctx with - | Some _ as x -> x + | Terms.Node l as t-> + match f t with + | Some _ as x -> inject_pos pos ctx x | None -> let rec first pre post = function | [] -> None @@ -72,11 +77,63 @@ module Superposition (B : Terms.Blob) = in aux pos ctx t ;; - - let build_clause bag filter rule t subst vl id id2 pos dir = + + let parallel_positions bag pos ctx id lit t f = + let rec aux bag pos ctx id lit = function + | Terms.Leaf _ as t -> f bag t pos ctx id lit + | Terms.Var _ as t -> bag,t,id,lit + | Terms.Node (hd::l) as t-> + let bag,t,id1,lit = f bag t pos ctx id lit in + if id = id1 then + let bag, l, _, id, lit = + List.fold_left + (fun (bag,pre,post,id,lit) t -> + let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in + let newpos = (List.length pre)::pos in + let bag,newt,id,lit = aux bag newpos newctx id lit t in + if post = [] then bag, pre@[newt], [], id,lit + else bag, pre @ [newt], List.tl post, id, lit) + (bag, [hd], List.tl l, id,lit) l + in + bag, Terms.Node l, id, lit + else bag,t,id1,lit + | _ -> assert false + in + aux bag pos ctx id lit t + ;; + + let visit bag pos ctx id lit t f = + let rec aux bag pos ctx id subst lit = function + | Terms.Leaf _ as t -> + let bag,subst,t,id,lit = f bag t pos ctx id lit + in assert (subst=[]); bag,t,id,lit + | Terms.Var i as t -> + let t= Subst.apply_subst subst t in + bag,t,id,lit + | Terms.Node (hd::l) -> + let bag, l, _, id,lit = + List.fold_left + (fun (bag,pre,post,id,lit) t -> + let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in + let newpos = (List.length pre)::pos in + let bag,newt,id,lit = aux bag newpos newctx id subst lit t in + if post = [] then bag, pre@[newt], [], id, lit + else bag, pre @ [newt], List.tl post, id, lit) + (bag, [hd], List.map (Subst.apply_subst subst) (List.tl l), id, lit) l + in + let bag,subst,t,id1,lit = f bag (Terms.Node l) pos ctx id lit + in + if id1 = id then (assert (subst=[]); bag,t,id,lit) + else aux bag pos ctx id1 subst lit t + | _ -> assert false + in + aux bag pos ctx id [] lit t + ;; + + let build_clause ~fresh bag maxvar filter rule t subst id id2 pos dir clause_ctx = let proof = Terms.Step(rule,id,id2,dir,pos,subst) in let t = Subst.apply_subst subst t in - if filter t then + if filter subst then let literal = match t with | Terms.Node [ Terms.Leaf eq ; ty; l; r ] when B.eq B.eqP eq -> @@ -84,267 +141,776 @@ module Superposition (B : Terms.Blob) = Terms.Equation (l, r, ty, o) | t -> Terms.Predicate t in - let bag, uc = - Utils.add_to_bag bag (0, literal, vl, proof) + let nlit,plit = clause_ctx literal in + let cl = (0, nlit, plit, [], proof) in + let vl = Clauses.vars_of_clause cl in + let cl,maxvar = + if fresh then Clauses.fresh_clause ~subst maxvar (0, nlit, plit, vl, proof) + else (0,nlit,plit,vl,proof),maxvar + in + let bag, cl = + Terms.add_to_bag cl bag in - Some (bag, uc) + debug (lazy (Pp.pp_clause cl)); + Some (bag, maxvar, cl, literal) else ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm t);*)None) ;; + let prof_build_clause = HExtlib.profile ~enable "build_clause";; + let build_clause ~fresh bag maxvar filter rule t subst id id2 pos x = + prof_build_clause.HExtlib.profile + (build_clause ~fresh bag maxvar filter rule t subst id id2 pos) x + ;; (* ============ simplification ================= *) + let prof_demod_u = HExtlib.profile ~enable "demod.unify";; + let prof_demod_r = HExtlib.profile ~enable "demod.retrieve_generalizations";; + let prof_demod_o = HExtlib.profile ~enable "demod.compare_terms";; + let prof_demod_s = HExtlib.profile ~enable "demod.apply_subst";; + + let demod table varlist subterm = + let cands = + prof_demod_r.HExtlib.profile + (IDX.DT.retrieve_generalizations table) subterm + in + list_first + (fun (dir, is_pos, pos, (id,nlit,plit,vl,_)) -> + match nlit,plit with + | [], [(lit,_)] -> + (match lit with + | Terms.Predicate _ -> assert false + | Terms.Equation (l,r,_,o) -> + let side, newside = if dir=Terms.Left2Right then l,r else r,l in + try + let subst = + prof_demod_u.HExtlib.profile + (Unif.unification (* (varlist@vl) *) varlist subterm) side + in + let side = + prof_demod_s.HExtlib.profile + (Subst.apply_subst subst) side + in + let newside = + prof_demod_s.HExtlib.profile + (Subst.apply_subst subst) newside + in + if o = Terms.Incomparable || o = Terms.Invertible then + let o = + prof_demod_o.HExtlib.profile + (Order.compare_terms newside) side in + (* Riazanov, pp. 45 (ii) *) + if o = Terms.Lt then + Some (newside, subst, id, dir) + else + ((*prerr_endline ("Filtering: " ^ + Pp.pp_foterm side ^ " =(< || =)" ^ + Pp.pp_foterm newside ^ " coming from " ^ + Pp.pp_clause uc );*)None) + else + Some (newside, subst, id, dir) + with FoUnif.UnificationFailure _ -> None) + | _ -> None) + (IDX.ClauseSet.elements cands) + ;; + let prof_demod = HExtlib.profile ~enable "demod";; + let demod table varlist x = + prof_demod.HExtlib.profile (demod table varlist) x + ;; - let demod table varlist subterm pos context = - let cands = IDX.DT.retrieve_generalizations table subterm in + let mydemod table varlist subterm = + let cands = + prof_demod_r.HExtlib.profile + (IDX.DT.retrieve_generalizations table) subterm + in list_first - (fun (dir, (id,lit,vl,_)) -> - match lit with + (fun (dir, is_pos, pos, (id,nlit,plit,vl,_)) -> + match (nlit,plit) with + | [],[(lit,_)] -> + (match lit with | Terms.Predicate _ -> assert false | Terms.Equation (l,r,_,o) -> let side, newside = if dir=Terms.Left2Right then l,r else r,l in try - let subst, varlist = - Unif.unification (varlist@vl) varlist subterm side + let subst = + prof_demod_u.HExtlib.profile + (Unif.unification (* (varlist@vl) *) varlist subterm) side + in + let iside = + prof_demod_s.HExtlib.profile + (Subst.apply_subst subst) side in - if o = Terms.Incomparable then - let side = Subst.apply_subst subst side in - let newside = Subst.apply_subst subst newside in - let o = Order.compare_terms newside side in + let inewside = + prof_demod_s.HExtlib.profile + (Subst.apply_subst subst) newside + in + if o = Terms.Incomparable || o = Terms.Invertible then + let o = + prof_demod_o.HExtlib.profile + (Order.compare_terms inewside) iside in (* Riazanov, pp. 45 (ii) *) - if o = Terms.Lt then - Some (context newside, subst, varlist, id, pos, dir) + if o = Terms.Lt then + Some (newside, subst, id, dir) else ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm side ^ " =(< || =)" ^ Pp.pp_foterm newside ^ " coming from " ^ Pp.pp_unit_clause uc );*)None) else - Some (context newside, subst, varlist, id, pos, dir) + Some (newside, subst, id, dir) with FoUnif.UnificationFailure _ -> None) + | _ -> assert false) (IDX.ClauseSet.elements cands) ;; - (* XXX: possible optimization, if the literal has a "side" already - * in normal form we should not traverse it again *) - let demodulate_once bag (id, literal, vl, pr) table = - debug ("Demodulating : " ^ (Pp.pp_unit_clause (id, literal, vl, pr))); - let t = - match literal with - | Terms.Predicate t -> t - | Terms.Equation (l,r,ty,_) -> Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] + let ctx_demod table vl clause_ctx bag t pos ctx id lit = + match mydemod table vl t with + | None -> (bag,[],t,id,lit) + | Some (newside, subst, id2, dir) -> + let inewside = Subst.apply_subst subst newside in + match build_clause ~fresh:false bag 0 (fun _ -> true) + Terms.Demodulation (ctx inewside) subst id id2 pos dir clause_ctx + with + | None -> assert false + | Some (bag,_,(id,_,_,_,_),lit) -> + (bag,subst,newside,id,lit) + ;; + + let rec demodulate bag (id,nlit,plit,vl,proof) table = + let rec demod_lit ~jump_to_right bag id lit clause_ctx = + (match lit with + | Terms.Predicate t -> assert false + | Terms.Equation (l,r,ty,_) -> + let bag,l,id1,lit = + visit bag [2] + (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) id lit l + (ctx_demod table vl clause_ctx) + in + let bag,_,id2,lit = + visit bag [3] + (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) id1 lit r + (ctx_demod table vl clause_ctx) + in + bag,id2,lit) in - match first_position [] (fun x -> x) t (demod table vl) with - | None -> None - | Some (newt, subst, varlist, id2, pos, dir) -> - build_clause bag (fun _ -> true) Terms.Demodulation - newt subst varlist id id2 pos dir + let nlit,_,bag,id = if nlit = [] then nlit,[],bag,id + else List.fold_left + (fun (pre,post,bag,id) (lit,sel) -> + let bag, id, lit = + demod_lit ~jump_to_right:false bag id lit (fun l -> pre@[l,sel]@post,plit) + in + if post=[] then pre@[(lit,sel)],[],bag,id + else pre@[(lit,sel)],List.tl post,bag,id) + ([],List.tl nlit, bag, id) nlit + in + let _,_,bag,id = if plit = [] then plit,[],bag,id + else List.fold_left + (fun (pre,post,bag,id) (lit,sel) -> + let bag, id, lit = + demod_lit ~jump_to_right:false bag id lit (fun l -> nlit,pre@[l,sel]@post) + in + if post=[] then pre@[(lit,sel)],[],bag,id + else pre@[(lit,sel)],List.tl post,bag,id) + ([],List.tl plit, bag, id) plit + in + let cl,_,_ = Terms.get_from_bag id bag in + bag,cl + ;; + + let parallel_demod table vl clause_ctx bag t pos ctx id lit = + match demod table vl t with + | None -> (bag,t,id,lit) + | Some (newside, subst, id2, dir) -> + match build_clause ~fresh:false bag 0 (fun _ -> true) + Terms.Demodulation (ctx newside) subst id id2 pos dir clause_ctx + with + | None -> assert false + | Some (bag,_,(id,_,_,_,_),lit) -> + (bag,newside,id,lit) + ;; + + let demodulate_once ~jump_to_right bag id literal vl table clause_ctx = + match literal with + | Terms.Predicate t -> assert false + | Terms.Equation (l,r,ty,_) as lit -> + let bag,l,id1,lit = if jump_to_right then (bag,l,id,lit) else + parallel_positions bag [2] + (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) id lit l + (parallel_demod table vl clause_ctx) + in + let jump_to_right = id1 = id in + let bag,r,id2,lit = + parallel_positions bag [3] + (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) id1 lit r + (parallel_demod table vl clause_ctx) + in + if id = id2 then None + else + Some ((bag,id2,lit),jump_to_right) + ;; + + let rec demodulate_old bag (id,nlit,plit,vl,proof) table = + let rec demod_lit ~jump_to_right bag id lit clause_ctx = + match demodulate_once ~jump_to_right bag id lit vl table clause_ctx with + | None -> bag, id, lit + | Some ((bag, id, lit),jump) -> + demod_lit ~jump_to_right:jump bag id lit clause_ctx + in + (*match nlit,plit with + |[],[lit,_] -> + let bag, id, lit = demod_lit ~jump_to_right:false bag id lit (fun l -> nlit, [l,true]) + in + let cl,_,_ = Terms.get_from_bag id bag in + bag,cl + |[lit,_],[] -> + let bag, id, lit = demod_lit ~jump_to_right:false bag id lit (fun l -> [l,true],[]) + in + let cl,_,_ = Terms.get_from_bag id bag in + bag,cl + |_ -> assert false*) + let nlit,_,bag,id = if nlit = [] then nlit,[],bag,id + else List.fold_left + (fun (pre,post,bag,id) (lit,sel) -> + let bag, id, lit = + demod_lit ~jump_to_right:false bag id lit (fun l -> pre@[l,sel]@post,plit) + in + if post=[] then pre@[(lit,sel)],[],bag,id + else pre@[(lit,sel)],List.tl post,bag,id) + ([],List.tl nlit, bag, id) nlit + in + let _,_,bag,id = if plit = [] then plit,[],bag,id + else List.fold_left + (fun (pre,post,bag,id) (lit,sel) -> + let bag, id, lit = + demod_lit ~jump_to_right:false bag id lit (fun l -> nlit,pre@[l,sel]@post) + in + if post=[] then pre@[(lit,sel)],[],bag,id + else pre@[(lit,sel)],List.tl post,bag,id) + ([],List.tl plit, bag, id) plit + in + let cl,_,_ = Terms.get_from_bag id bag in + bag,cl ;; - let rec demodulate bag clause table = - match demodulate_once bag clause table with - | None -> bag, clause - | Some (bag, clause) -> demodulate bag clause table + let prof_demodulate = HExtlib.profile ~enable "demodulate";; + let demodulate bag clause x = + prof_demodulate.HExtlib.profile (demodulate bag clause) x ;; (* move away *) - let is_identity_clause = function - | _, Terms.Equation (_,_,_,Terms.Eq), _, _ -> true - | _, Terms.Predicate _, _, _ -> assert false + let is_identity_clause ~unify = function + | _, [], [Terms.Equation (_,_,_,Terms.Eq),_], _, _ -> true + | _, [], [Terms.Equation (l,r,_,_),_], vl, _ when unify -> + (try ignore(Unif.unification (* vl *) [] l r); true + with FoUnif.UnificationFailure _ -> false) | _ -> false ;; - let is_subsumed ~unify (id, lit, vl, _) table = - match lit with - | Terms.Predicate _ -> assert false - | Terms.Equation (l,r,ty,_) -> - let retrieve = if unify then IDX.DT.retrieve_unifiables - else IDX.DT.retrieve_generalizations in - let lcands = retrieve table l in - let rcands = retrieve table r in - let f b c = - let dir, l, r, vl = - match c with - | (d, (_,Terms.Equation (l,r,ty,_),vl,_))-> d, l, r, vl - |_ -> assert false - in - let l, r = if (dir = Terms.Left2Right) = b then l,r else r,l in - Terms.Node [ Terms.Leaf B.eqP; ty; l; r ], vl - in - let cands1 = List.map (f true) (IDX.ClauseSet.elements lcands) in - let cands2 = List.map (f false) (IDX.ClauseSet.elements rcands) in - let t = Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in - let locked_vars = if unify then [] else vl in - List.exists - (fun (c, vl1) -> - try ignore(Unif.unification (vl@vl1) locked_vars c t); true - with FoUnif.UnificationFailure _ -> false) - (cands1 @ cands2) + let is_goal_trivial = function + | _, [Terms.Equation (_,_,_,Terms.Eq),_], [], _, _ -> true + | _, [Terms.Equation (l,r,_,_),_], [], vl, _ -> + (try ignore(Unif.unification (* vl *) [] l r); true + with FoUnif.UnificationFailure _ -> false) + | _ -> false + + let fold_build_new_clause bag maxvar id rule filter res clause_ctx = + debug (lazy (string_of_int (List.length res))); + let (bag, maxvar), res = + HExtlib.filter_map_acc + (fun (bag, maxvar) (t,subst,id2,pos,dir) -> + match build_clause ~fresh:true bag maxvar filter + rule t subst id id2 pos dir clause_ctx with + | None -> None + | Some (bag,maxvar,res,_) -> Some ((bag,maxvar),res)) + (bag, maxvar) res + in + bag, maxvar, res + ;; + + (* Tries to rewrite an equality to identity, using unit equalities in table *) + let rewrite_eq ~unify l r ty vl table = + let retrieve = if unify then IDX.DT.retrieve_unifiables + else IDX.DT.retrieve_generalizations in + let lcands = retrieve table l in + let rcands = retrieve table r in + let f b c = + let id, dir, l, r, vl = + match c with + | (d,_,_, (id,[],[Terms.Equation (l,r,ty,_),_],vl,_))-> id, d, l, r, vl + | (d,_,_, (id,[Terms.Equation (l,r,ty,_),_],[],vl,_))-> id, d, l, r, vl + |_ -> assert false + in + let reverse = (dir = Terms.Left2Right) = b in + let l, r, proof_rewrite_dir = if reverse then l,r,Terms.Left2Right + else r,l, Terms.Right2Left in + (id,proof_rewrite_dir,Terms.Node [ Terms.Leaf B.eqP; ty; l; r ], vl) + in + let cands1 = List.map (f true) (IDX.ClauseSet.elements lcands) in + let cands2 = List.map (f false) (IDX.ClauseSet.elements rcands) in + let t = Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in + let locked_vars = if unify then [] else vl in + let rec aux = function + | [] -> None + | (id2,dir,c,vl1)::tl -> + try + let subst = Unif.unification (* (vl@vl1) *) locked_vars c t in + Some (id2, dir, subst) + with FoUnif.UnificationFailure _ -> aux tl + in + aux (cands1 @ cands2) + ;; + + let is_subsumed ~unify bag maxvar (id, nlit, plit, vl, _) table = + match nlit,plit with + | [Terms.Equation (l,r,ty,_) ,_],[] + | [],[Terms.Equation (l,r,ty,_) ,_]-> + (match rewrite_eq ~unify l r ty vl table with + | None -> None + | Some (id2, dir, subst) -> + let id_t = Terms.Node [ Terms.Leaf B.eqP; ty; r; r ] in + build_clause ~fresh:true bag maxvar (fun _ -> true) + Terms.Superposition id_t subst id id2 [2] dir (fun l -> [],[l,true])) + | _ -> None (* TODO : implement subsumption for clauses *) + ;; + let prof_is_subsumed = HExtlib.profile ~enable "is_subsumed";; + let is_subsumed ~unify bag maxvar c x = + prof_is_subsumed.HExtlib.profile (is_subsumed ~unify bag maxvar c) x + ;; + (* id refers to a clause proving contextl l = contextr r *) + + let rec deep_eq ~unify l r ty pos contextl contextr table acc = + match acc with + | None -> None + | Some(bag,maxvar,(id,nlit,plit,vl,p as cl),subst) -> + let l = Subst.apply_subst subst l in + let r = Subst.apply_subst subst r in + try + let subst1 = Unif.unification (* vl *) [] l r in + let lit = + match nlit,plit with + | [Terms.Equation (l,r,ty,o),_],[] -> + Terms.Equation (FoSubst.apply_subst subst1 l, + FoSubst.apply_subst subst1 r, ty, o) + | _ -> debug (lazy (Pp.pp_clause cl));assert false + in + Some(bag,maxvar,(id,[lit,true],[],vl,p),Subst.concat subst1 subst) + with FoUnif.UnificationFailure _ -> + match rewrite_eq ~unify l r ty vl table with + | Some (id2, dir, subst1) -> + let newsubst = Subst.concat subst1 subst in + let id_t = + FoSubst.apply_subst newsubst + (Terms.Node[Terms.Leaf B.eqP;ty;contextl r;contextr r]) + in + (match + build_clause ~fresh:true bag maxvar (fun _ -> true) + Terms.Superposition id_t + subst1 id id2 (pos@[2]) dir (fun l -> [l,true],[]) + with + | Some (bag, maxvar, c, _) -> + Some(bag,maxvar,c,newsubst) + | None -> assert false) + | None -> + match l,r with + | Terms.Node (a::la), Terms.Node (b::lb) when + a = b && List.length la = List.length lb -> + let acc,_,_,_ = + List.fold_left2 + (fun (acc,pre,postl,postr) a b -> + let newcl = + fun x -> contextl(Terms.Node (pre@(x::postl))) in + let newcr = + fun x -> contextr(Terms.Node (pre@(x::postr))) in + let newpos = List.length pre::pos in + let footail l = + if l = [] then [] else List.tl l in + (deep_eq ~unify a b ty + newpos newcl newcr table acc,pre@[b], + footail postl, footail postr)) + (acc,[a],List.tl la,List.tl lb) la lb + in acc + | _,_ -> None + ;; + let prof_deep_eq = HExtlib.profile ~enable "deep_eq";; + let deep_eq ~unify l r ty pos contextl contextr table x = + prof_deep_eq.HExtlib.profile (deep_eq ~unify l r ty pos contextl contextr table) x + ;; + + let rec orphan_murder bag acc i = + match Terms.get_from_bag i bag with + | (_,_,_,_,Terms.Exact _),discarded,_ -> (discarded,acc) + | (_,_,_,_,Terms.Step (_,i1,i2,_,_,_)),true,_ -> (true,acc) + | (_,_,_,_,Terms.Step (_,i1,i2,_,_,_)),false,_ -> + if (List.mem i acc) then (false,acc) + else match orphan_murder bag acc i1 with + | (true,acc) -> (true,acc) + | (false,acc) -> + let (res,acc) = orphan_murder bag acc i2 in + if res then res,acc else res,i::acc + ;; + + let orphan_murder bag actives cl = + let (id,_,_,_,_) = cl in + let actives = List.map (fun (i,_,_,_,_) -> i) actives in + let (res,_) = orphan_murder bag actives id in + if res then debug (lazy "Orphan murdered"); res + ;; + let prof_orphan_murder = HExtlib.profile ~enable "orphan_murder";; + let orphan_murder bag actives x = + prof_orphan_murder.HExtlib.profile (orphan_murder bag actives) x ;; (* demodulate and check for subsumption *) - let simplify table bag clause = - let bag, clause = demodulate bag clause table in - if is_identity_clause clause then None + let simplify table maxvar bag clause = + if is_identity_clause ~unify:false clause then bag,None + (* else if orphan_murder bag actives clause then bag,None *) + else let bag, clause = demodulate bag clause table in + if is_identity_clause ~unify:false clause then bag,None else - if is_subsumed ~unify:false clause table then None - else Some (bag, clause) + match is_subsumed ~unify:false bag maxvar clause table with + | None -> bag, Some clause + | Some _ -> bag, None + ;; + + let simplify table maxvar bag clause = + match simplify table maxvar bag clause with + | bag, None -> + let (id,_,_,_,_) = clause in + let (_,_,iter) = Terms.get_from_bag id bag in + Terms.replace_in_bag (clause,true,iter) bag, None + | bag, Some clause -> bag, Some clause + (*let (id,_,_,_) = clause in + if orphan_murder bag clause then + Terms.M.add id (clause,true) bag, Some clause + else bag, Some clause*) + ;; + let prof_simplify = HExtlib.profile ~enable "simplify";; + let simplify table maxvar bag x = + prof_simplify.HExtlib.profile (simplify table maxvar bag ) x + ;; + + let one_pass_simplification new_clause (alist,atable) bag maxvar = + match simplify atable maxvar bag new_clause with + | bag,None -> bag,None (* new_clause has been discarded *) + | bag,(Some clause) -> + let ctable = IDX.index_clause IDX.DT.empty clause in + let bag, alist, atable = + List.fold_left + (fun (bag, alist, atable) c -> + match simplify ctable maxvar bag c with + |bag,None -> (bag,alist,atable) + (* an active clause as been discarded *) + |bag,Some c1 -> + bag, c :: alist, IDX.index_clause atable c) + (bag,[],IDX.DT.empty) alist + in + bag, Some (clause, (alist,atable)) + ;; + let prof_one_pass_simplification = HExtlib.profile ~enable "one_pass_simplification";; + let one_pass_simplification new_clause t bag x = + prof_one_pass_simplification.HExtlib.profile (one_pass_simplification new_clause t bag ) x + ;; + + let simplification_step ~new_cl cl (alist,atable) bag maxvar new_clause = + let atable1 = + if new_cl then atable else + IDX.index_clause atable cl + in + (* Simplification of new_clause with : * + * - actives and cl if new_clause is not cl * + * - only actives otherwise *) + match + simplify atable1 maxvar bag new_clause with + | bag,None -> bag,(Some cl, None) (* new_clause has been discarded *) + | bag,Some clause -> + (* Simplification of each active clause with clause * + * which is the simplified form of new_clause *) + let ctable = IDX.index_clause IDX.DT.empty clause in + let bag, newa, alist, atable = + List.fold_left + (fun (bag, newa, alist, atable) c -> + match simplify ctable maxvar bag c with + |bag,None -> (bag, newa, alist, atable) + (* an active clause as been discarded *) + |bag,Some c1 -> + if (c1 == c) then + bag, newa, c :: alist, + IDX.index_clause atable c + else + bag, c1 :: newa, alist, atable) + (bag,[],[],IDX.DT.empty) alist + in + if new_cl then + bag, (Some cl, Some (clause, (alist,atable), newa)) + else + (* if new_clause is not cl, we simplify cl with clause *) + match simplify ctable maxvar bag cl with + | bag,None -> + (* cl has been discarded *) + bag,(None, Some (clause, (alist,atable), newa)) + | bag,Some cl1 -> + bag,(Some cl1, Some (clause, (alist,atable), newa)) + ;; + let prof_simplification_step = HExtlib.profile ~enable "simplification_step";; + let simplification_step ~new_cl cl (alist,atable) bag maxvar x = + prof_simplification_step.HExtlib.profile (simplification_step ~new_cl cl (alist,atable) bag maxvar) x + ;; + + let keep_simplified cl (alist,atable) bag maxvar = + let rec keep_simplified_aux ~new_cl cl (alist,atable) bag newc = + if new_cl then + match simplification_step ~new_cl cl (alist,atable) bag maxvar cl with + | _,(None, _) -> assert false + | bag,(Some _, None) -> bag,None + | bag,(Some _, Some (clause, (alist,atable), newa)) -> + keep_simplified_aux ~new_cl:(cl!=clause) clause (alist,atable) + bag (newa@newc) + else + match newc with + | [] -> bag, Some (cl, (alist,atable)) + | hd::tl -> + match simplification_step ~new_cl cl + (alist,atable) bag maxvar hd with + | _,(None,None) -> assert false + | bag,(Some _,None) -> + keep_simplified_aux ~new_cl cl (alist,atable) bag tl + | bag,(None, Some _) -> bag,None + | bag,(Some cl1, Some (clause, (alist,atable), newa)) -> + let alist,atable = + (clause::alist, IDX.index_clause atable clause) + in + keep_simplified_aux ~new_cl:(cl!=cl1) cl1 (alist,atable) + bag (newa@tl) + in + keep_simplified_aux ~new_cl:true cl (alist,atable) bag [] + ;; + let prof_keep_simplified = HExtlib.profile ~enable "keep_simplified";; + let keep_simplified cl t bag x = + prof_keep_simplified.HExtlib.profile (keep_simplified cl t bag) x ;; (* this is like simplify but raises Success *) - let simplify_goal maxvar table bag clause = - let bag, clause = demodulate bag clause table in - if (is_identity_clause clause) || (is_subsumed ~unify:true clause table) + let simplify_goal ~no_demod maxvar table bag g_actives clause = + let bag, clause = + if no_demod then bag, clause else demodulate bag clause table + in + if List.exists (Clauses.are_alpha_eq_cl clause) g_actives then None else + if (is_goal_trivial clause) then raise (Success (bag, maxvar, clause)) - else bag, clause + else + let (id,nlit,plit,vl,_) = clause in + if vl = [] then Some (bag,clause) + else + let l,r,ty = + match nlit,plit with + | [Terms.Equation(l,r,ty,_),_],[] -> l,r,ty + | _ -> assert false + in + match deep_eq ~unify:true l r ty [] (fun x -> x) (fun x -> x) + table (Some(bag,maxvar,clause,Subst.id_subst)) with + | None -> Some (bag,clause) + | Some (bag,maxvar,cl,subst) -> + prerr_endline "Goal subsumed"; + raise (Success (bag,maxvar,cl)) +(* + else match is_subsumed ~unify:true bag maxvar clause table with + | None -> Some (bag, clause) + | Some ((bag,maxvar),c) -> + prerr_endline "Goal subsumed"; + raise (Success (bag,maxvar,c)) +*) + ;; + + let prof_simplify_goal = HExtlib.profile ~enable "simplify_goal";; + let simplify_goal ~no_demod maxvar table bag g_actives x = + prof_simplify_goal.HExtlib.profile ( simplify_goal ~no_demod maxvar table bag g_actives) x ;; (* =================== inference ===================== *) (* this is OK for both the sup_left and sup_right inference steps *) - let superposition table varlist subterm pos context = + let superposition table varlist is_pos subterm pos context = let cands = IDX.DT.retrieve_unifiables table subterm in HExtlib.filter_map - (fun (dir, (id,lit,vl,_ (*as uc*))) -> - match lit with - | Terms.Predicate _ -> assert false - | Terms.Equation (l,r,_,o) -> - let side, newside = if dir=Terms.Left2Right then l,r else r,l in + (fun (dir, is_cand_pos, _, (id,nlit,plit,vl,_ (*as uc*))) -> + match nlit,plit with + | [],[Terms.Equation (l,r,_,o),_] -> + (let side, newside = if dir=Terms.Left2Right then l,r else r,l in + debug (lazy (Pp.pp_foterm subterm)); + debug (lazy (Pp.pp_foterm side)); try - let subst, varlist = - Unif.unification (varlist@vl) [] subterm side - in - if o = Terms.Incomparable then + let subst = + Unif.unification (* (varlist@vl)*) [] subterm side + in + if o = Terms.Incomparable || o = Terms.Invertible then let side = Subst.apply_subst subst side in let newside = Subst.apply_subst subst newside in let o = Order.compare_terms side newside in (* XXX: check Riazanov p. 33 (iii) *) if o <> Terms.Lt && o <> Terms.Eq then - Some (context newside, subst, varlist, id, pos, dir) + Some (context newside, subst, id, pos, dir) else - ((*prerr_endline ("Filtering: " ^ - Pp.pp_foterm side ^ " =(< || =)" ^ - Pp.pp_foterm newside ^ " coming from " ^ - Pp.pp_unit_clause uc );*)None) + (debug (lazy "Filtering out..."); None) else - Some (context newside, subst, varlist, id, pos, dir) + Some (context newside, subst, id, pos, dir) with FoUnif.UnificationFailure _ -> None) + | _ -> assert false) (IDX.ClauseSet.elements cands) ;; - let build_new_clause bag maxvar filter rule t subst vl id id2 pos dir = - let maxvar, vl, relocsubst = Utils.relocate maxvar vl in - let subst = Subst.concat relocsubst subst in - match build_clause bag filter rule t subst vl id id2 pos dir with - | Some (bag, c) -> Some ((bag, maxvar), c) - | None -> None - ;; - - - let fold_build_new_clause bag maxvar id rule filter res = - let (bag, maxvar), res = - HExtlib.filter_map_acc - (fun (bag, maxvar) (t,subst,vl,id2,pos,dir) -> - build_new_clause bag maxvar filter rule t subst vl id id2 pos dir) - (bag, maxvar) res - in - bag, maxvar, res - ;; - (* Superposes selected equation with equalities in table *) - let superposition_with_table bag maxvar (id,selected,vl,_) table = - match selected with - | Terms.Predicate _ -> assert false + let superposition_with_table bag maxvar id vl lit is_pos clause_ctx table = + match lit with | Terms.Equation (l,r,ty,Terms.Lt) -> fold_build_new_clause bag maxvar id Terms.Superposition (fun _ -> true) (all_positions [3] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) - r (superposition table vl)) + r (superposition table vl is_pos)) clause_ctx + | Terms.Equation (l,r,ty,Terms.Invertible) | Terms.Equation (l,r,ty,Terms.Gt) -> fold_build_new_clause bag maxvar id Terms.Superposition (fun _ -> true) (all_positions [2] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) - l (superposition table vl)) - | Terms.Equation (l,r,ty,Terms.Incomparable) -> - fold_build_new_clause bag maxvar id Terms.Superposition - (function (* Riazanov: p.33 condition (iv) *) - | Terms.Node [Terms.Leaf eq; ty; l; r ] when B.eq B.eqP eq -> - Order.compare_terms l r <> Terms.Eq - | _ -> assert false) - ((all_positions [3] - (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) - r (superposition table vl)) @ - (all_positions [2] - (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) - l (superposition table vl))) + l (superposition table vl is_pos)) clause_ctx + | Terms.Equation (l,r,ty,Terms.Incomparable) -> + let filtering avoid subst = (* Riazanov: p.33 condition (iv) *) + let l = Subst.apply_subst subst l in + let r = Subst.apply_subst subst r in + let o = Order.compare_terms l r in + o <> avoid && o <> Terms.Eq + in + let bag, maxvar,r_terms = + fold_build_new_clause bag maxvar id Terms.Superposition + (filtering Terms.Gt) + (all_positions [3] + (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) + r (superposition table vl is_pos)) clause_ctx + in + let bag, maxvar, l_terms = + fold_build_new_clause bag maxvar id Terms.Superposition + (filtering Terms.Lt) + (all_positions [2] + (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) + l (superposition table vl is_pos)) clause_ctx + in + bag, maxvar, r_terms @ l_terms | _ -> assert false ;; + let superpose_literal id vl table is_pos (bag,maxvar,pre,post,acc) (lit,sel) = + let clause_ctx = + if is_pos then fun l -> [],pre@[l,true]@post + else fun l -> pre@[l,true]@post,[] + in + let bag, maxvar, newc = + superposition_with_table bag maxvar id vl lit is_pos clause_ctx table + in + if post = [] then bag,maxvar,pre@[lit,sel],[],newc@acc + else bag,maxvar,pre@[lit,sel],List.tl post,newc@acc + ;; + + (* the current equation is normal w.r.t. demodulation with atable * (and is not the identity) *) let infer_right bag maxvar current (alist,atable) = - (* We demodulate actives clause with current *) - let ctable = IDX.index_unit_clause IDX.DT.empty current in - let bag, (alist, atable) = + (* We demodulate actives clause with current until all * + * active clauses are reduced w.r.t each other *) + (* let bag, (alist,atable) = keep_simplified (alist,atable) bag [current] in *) + let ctable = IDX.index_clause IDX.DT.empty current in + (* let bag, (alist, atable) = let bag, alist = HExtlib.filter_map_acc (simplify ctable) bag alist in - bag, (alist, List.fold_left IDX.index_unit_clause IDX.DT.empty alist) - in - debug "Simplified active clauses with fact"; + bag, (alist, List.fold_left IDX.index_clause IDX.DT.empty alist) + in*) + debug (lazy "Simplified active clauses with fact"); (* We superpose active clauses with current *) let bag, maxvar, new_clauses = List.fold_left - (fun (bag, maxvar, acc) active -> - let bag, maxvar, newc = - superposition_with_table bag maxvar active ctable + (fun (bag, maxvar, acc) (id,nlit,plit,vl,_) -> + let bag, maxvar, _, _, acc = + if nlit = [] then bag,maxvar,[],[],acc + else List.fold_left + (superpose_literal id vl ctable false) (bag,maxvar,[],List.tl nlit,acc) nlit in - bag, maxvar, newc @ acc) + let bag, maxvar, _, _, acc = + if plit = [] then bag,maxvar,[],[],acc + else List.fold_left + (superpose_literal id vl ctable true) (bag,maxvar,[],List.tl plit,acc) plit + in + bag, maxvar, acc) (bag, maxvar, []) alist in - debug "First superpositions"; - (* We add current to active clauses so that it can be * - * superposed with itself *) + debug (lazy "First superpositions"); + (* We add current to active clauses so that it can be * + * superposed with itself *) let alist, atable = - current :: alist, IDX.index_unit_clause atable current + current :: alist, IDX.index_clause atable current in - debug "Indexed"; - let fresh_current, maxvar = Utils.fresh_unit_clause maxvar current in - (* We need to put fresh_current into the bag so that all * - * variables clauses refer to are known. *) - let bag, fresh_current = Utils.add_to_bag bag fresh_current in - (* We superpose current with active clauses *) - let bag, maxvar, additional_new_clauses = - superposition_with_table bag maxvar fresh_current atable + debug (lazy "Indexed"); + let fresh_current, maxvar = Clauses.fresh_clause maxvar current in + (* We need to put fresh_current into the bag so that all * + * variables clauses refer to are known. *) + let bag, (id,nlit,plit,vl,_) = Terms.add_to_bag fresh_current bag in + (* We superpose current with active clauses *) + let bag, maxvar, _, _, additional_new_clauses = + if nlit = [] then bag,maxvar,[],[],[] + else List.fold_left + (superpose_literal id vl atable false) (bag,maxvar,[],List.tl nlit,[]) nlit in - debug "Another superposition"; - let new_clauses = new_clauses @ additional_new_clauses in + let bag, maxvar, _, _, additional_new_clauses = + if plit = [] then bag,maxvar,[],[],[] + else List.fold_left + (superpose_literal id vl atable true) (bag,maxvar,[],List.tl plit,additional_new_clauses) plit + in + debug (lazy "Another superposition"); + let new_clauses = new_clauses@additional_new_clauses in + debug (lazy (Printf.sprintf "Demodulating %d clauses" + (List.length new_clauses))); let bag, new_clauses = - HExtlib.filter_map_acc (simplify atable) bag new_clauses + HExtlib.filter_map_monad (simplify atable maxvar) bag new_clauses in - debug "Demodulated new clauses"; + debug (lazy "Demodulated new clauses"); bag, maxvar, (alist, atable), new_clauses ;; + let prof_ir = HExtlib.profile ~enable "infer_right";; + let infer_right bag maxvar current t = + prof_ir.HExtlib.profile (infer_right bag maxvar current) t + ;; + let infer_left bag maxvar goal (_alist, atable) = - (* We superpose the goal with active clauses *) - let bag, maxvar, new_goals = - superposition_with_table bag maxvar goal atable + (* We superpose the goal with active clauses *) + if (match goal with (_,_,_,[],_) -> true | _ -> false) then bag, maxvar, [] + else + let (id,nlit,vl) = + match goal with + | (id,nlit,[],vl,_) -> id,nlit,vl + | _ -> assert false in - (* We demodulate the goal with active clauses *) + let bag, maxvar, _, _, new_goals = + List.fold_left (superpose_literal id vl atable false) + (bag,maxvar,[],List.tl nlit,[]) nlit + in + debug (lazy (string_of_int (List.length new_goals) ^ " new goals")); + (* We simplify the new goals with active clauses *) let bag, new_goals = List.fold_left (fun (bag, acc) g -> - let bag, g = demodulate bag g atable in - bag, g :: acc) + match simplify_goal ~no_demod:false maxvar atable bag [] g with + | None -> assert false + | Some (bag,g) -> bag,g::acc) (bag, []) new_goals in + debug (lazy "Simplified new goals with active clauses"); bag, maxvar, List.rev new_goals ;; - end - - + let prof_il = HExtlib.profile ~enable "infer_left";; + let infer_left bag maxvar goal t = + prof_il.HExtlib.profile (infer_left bag maxvar goal) t + ;; + end