X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fcomponents%2Ftactics%2Fparamodulation%2Fequality.ml;h=2be5da0627d07d7c390ba622ea4d692ab6751c40;hb=e8f64678cc425f19336ff4f905f9b2f00acd6627;hp=1708ed5b8e2d382ee10410c064c6af0b5c092dbf;hpb=0e6ba9d1134a3bfe9fd4d5b4495faf0811a216df;p=helm.git diff --git a/helm/software/components/tactics/paramodulation/equality.ml b/helm/software/components/tactics/paramodulation/equality.ml index 1708ed5b8..2be5da062 100644 --- a/helm/software/components/tactics/paramodulation/equality.ml +++ b/helm/software/components/tactics/paramodulation/equality.ml @@ -89,7 +89,7 @@ let string_of_equality ?env eq = id w (CicPp.ppterm ty) (CicPp.ppterm left) (Utils.string_of_comparison o) (CicPp.ppterm right) - (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m)) + (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m)) | Some (_, context, _) -> let names = Utils.names_of_context context in let w, _, (ty, left, right, o), m , id = open_equality eq in @@ -97,7 +97,7 @@ let string_of_equality ?env eq = id w (CicPp.pp ty names) (CicPp.pp left names) (Utils.string_of_comparison o) (CicPp.pp right names) - (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m)) + (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m)) ;; let compare (_,_,_,s1,_,_) (_,_,_,s2,_,_) = @@ -223,7 +223,7 @@ let open_eq_ind args = let open_pred pred = match pred with - | Cic.Lambda (_,ty,(Cic.Appl [Cic.MutInd (uri, 0,_);_;l;r])) + | Cic.Lambda (_,_,(Cic.Appl [Cic.MutInd (uri, 0,_);ty;l;r])) when LibraryObjects.is_eq_URI uri -> ty,uri,l,r | _ -> prerr_endline (CicPp.ppterm pred); assert false ;; @@ -305,12 +305,12 @@ let ty_of_lambda = function let compose_contexts ctx1 ctx2 = ProofEngineReduction.replace_lifting - ~equality:(=) ~what:[Cic.Rel 1] ~with_what:[ctx2] ~where:ctx1 + ~equality:(=) ~what:[Cic.Implicit(Some `Hole)] ~with_what:[ctx2] ~where:ctx1 ;; let put_in_ctx ctx t = ProofEngineReduction.replace_lifting - ~equality:(=) ~what:[Cic.Rel 1] ~with_what:[t] ~where:ctx + ~equality:(=) ~what:[Cic.Implicit (Some `Hole)] ~with_what:[t] ~where:ctx ;; let mk_eq uri ty l r = @@ -328,22 +328,24 @@ let open_eq = function ;; let contextualize uri ty left right t = + let hole = Cic.Implicit (Some `Hole) in (* aux [uri] [ty] [left] [right] [ctx] [t] * * the parameters validate this invariant * t: eq(uri) ty left right * that is used only by the base case * - * ctx is a term with an open (Rel 1). (Rel 1) is the empty context + * ctx is a term with an hole. Cic.Implicit(Some `Hole) is the empty context + * ty_ctx is the type of ctx_d *) - let rec aux uri ty left right ctx_d = function + let rec aux uri ty left right ctx_d ctx_ty = function | Cic.Appl ((Cic.Const(uri_sym,ens))::tl) when LibraryObjects.is_sym_eq_URI uri_sym -> let ty,l,r,p = open_sym ens tl in - mk_sym uri_sym ty l r (aux uri ty l r ctx_d p) + mk_sym uri_sym ty l r (aux uri ty l r ctx_d ctx_ty p) | Cic.LetIn (name,body,rest) -> (* we should go in body *) - Cic.LetIn (name,body,aux uri ty left right ctx_d rest) + Cic.LetIn (name,body,aux uri ty left right ctx_d ctx_ty rest) | Cic.Appl ((Cic.Const(uri_ind,ens))::tl) when LibraryObjects.is_eq_ind_URI uri_ind || LibraryObjects.is_eq_ind_r_URI uri_ind -> @@ -354,12 +356,13 @@ let contextualize uri ty left right t = let is_not_fixed_lp = is_not_fixed lp in let avoid_eq_ind = LibraryObjects.is_eq_ind_URI uri_ind in (* extract the context and the fixed term from the predicate *) - let m, ctx_c = + let m, ctx_c, ty2 = let m, ctx_c = if is_not_fixed_lp then rp,lp else lp,rp in (* they were under a lambda *) - let m = CicSubstitution.subst (Cic.Implicit None) m in - let ctx_c = CicSubstitution.subst (Cic.Rel 1) ctx_c in - m, ctx_c + let m = CicSubstitution.subst hole m in + let ctx_c = CicSubstitution.subst hole ctx_c in + let ty2 = CicSubstitution.subst hole ty2 in + m, ctx_c, ty2 in (* create the compound context and put the terms under it *) let ctx_dc = compose_contexts ctx_d ctx_c in @@ -372,17 +375,17 @@ let contextualize uri ty left right t = (* now put the proofs in the compound context *) let p1 = (* p1: dc_what = d_m *) if is_not_fixed_lp then - aux uri ty1 c_what m ctx_d p1 + aux uri ty2 c_what m ctx_d ctx_ty p1 else - mk_sym uri_sym ty d_m dc_what - (aux uri ty1 m c_what ctx_d p1) + mk_sym uri_sym ctx_ty d_m dc_what + (aux uri ty2 m c_what ctx_d ctx_ty p1) in let p2 = (* p2: dc_other = dc_what *) if avoid_eq_ind then - mk_sym uri_sym ty dc_what dc_other - (aux uri ty1 what other ctx_dc p2) + mk_sym uri_sym ctx_ty dc_what dc_other + (aux uri ty1 what other ctx_dc ctx_ty p2) else - aux uri ty1 other what ctx_dc p2 + aux uri ty1 other what ctx_dc ctx_ty p2 in (* if pred = \x.C[x]=m --> t : C[other]=m --> trans other what m if pred = \x.m=C[x] --> t : m=C[other] --> trans m what other *) @@ -391,36 +394,45 @@ let contextualize uri ty left right t = dc_other,dc_what,d_m,p2,p1 else d_m,dc_what,dc_other, - (mk_sym uri_sym ty dc_what d_m p1), - (mk_sym uri_sym ty dc_other dc_what p2) + (mk_sym uri_sym ctx_ty dc_what d_m p1), + (mk_sym uri_sym ctx_ty dc_other dc_what p2) in - mk_trans uri_trans ty a b c paeqb pbeqc + mk_trans uri_trans ctx_ty a b c paeqb pbeqc + | t when ctx_d = hole -> t | t -> let uri_sym = LibraryObjects.sym_eq_URI ~eq:uri in let uri_ind = LibraryObjects.eq_ind_URI ~eq:uri in let pred = (* ctx_d will go under a lambda, but put_in_ctx substitutes Rel 1 *) - let ctx_d = CicSubstitution.lift_from 2 1 ctx_d in (* bleah *) - let r = put_in_ctx ctx_d (CicSubstitution.lift 1 left) in - let l = ctx_d in - let lty = CicSubstitution.lift 1 ty in + let r = CicSubstitution.lift 1 (put_in_ctx ctx_d left) in + let l = + let ctx_d = CicSubstitution.lift 1 ctx_d in + put_in_ctx ctx_d (Cic.Rel 1) + in + let lty = CicSubstitution.lift 1 ctx_ty in Cic.Lambda (Cic.Name "foo",ty,(mk_eq uri lty l r)) in let d_left = put_in_ctx ctx_d left in let d_right = put_in_ctx ctx_d right in - let refl_eq = mk_refl uri ty d_left in - mk_sym uri_sym ty d_right d_left + let refl_eq = mk_refl uri ctx_ty d_left in + mk_sym uri_sym ctx_ty d_right d_left (mk_eq_ind uri_ind ty left pred refl_eq right t) in - let empty_context = Cic.Rel 1 in - aux uri ty left right empty_context t + aux uri ty left right hole ty t ;; let contextualize_rewrites t ty = let eq,ty,l,r = open_eq ty in contextualize eq ty l r t ;; - + +let add_subst subst = + function + | Exact t -> Exact (Subst.apply_subst subst t) + | Step (s,(rule, id1, (pos,id2), pred)) -> + Step (Subst.concat subst s,(rule, id1, (pos,id2), pred)) +;; + let build_proof_step ?(sym=false) lift subst p1 p2 pos l r pred = let p1 = Subst.apply_subst_lift lift subst p1 in let p2 = Subst.apply_subst_lift lift subst p2 in @@ -522,12 +534,12 @@ let string_of_id names id = | Exact t -> Printf.sprintf "%d = %s: %s = %s [%s]" id (CicPp.pp t names) (CicPp.pp l names) (CicPp.pp r names) - (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m)) + (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m)) | Step (_,(step,id1, (_,id2), _) ) -> Printf.sprintf "%6d: %s %6d %6d %s = %s [%s]" id (string_of_rule step) id1 id2 (CicPp.pp l names) (CicPp.pp r names) - (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m)) + (String.concat ", " (List.map (fun (i,_,_) -> string_of_int i) m)) with Not_found -> assert false @@ -549,6 +561,54 @@ let pp_proof names goalproof proof subst id initial_goal = "\nand then subsumed by " ^ string_of_int id ^ " when " ^ Subst.ppsubst subst ;; +module OT = + struct + type t = int + let compare = Pervasives.compare + end + +module M = Map.Make(OT) + +let rec find_deps m i = + if M.mem i m then m + else + let p,_,_ = proof_of_id i in + match p with + | Exact _ -> M.add i [] m + | Step (_,(_,id1,(_,id2),_)) -> + let m = find_deps m id1 in + let m = find_deps m id2 in + M.add i (M.find id1 m @ M.find id2 m @ [id1;id2]) m +;; + +let topological_sort l = + (* build the partial order relation *) + let m = + List.fold_left (fun m i -> find_deps m i) + M.empty l + in + let m = M.map (fun x -> Some x) m in + (* utils *) + let keys m = M.fold (fun i _ acc -> i::acc) m [] in + let split l m = List.filter (fun i -> M.find i m = Some []) l in + let purge l m = + M.mapi + (fun k v -> if List.mem k l then None else + match v with + | None -> None + | Some ll -> Some (List.filter (fun i -> not (List.mem i l)) ll)) + m + in + let rec aux m = + let keys = keys m in + let ok = split keys m in + let m = purge ok m in + ok @ (if ok = [] then [] else aux m) + in + aux m +;; + + (* returns the list of ids that should be factorized *) let get_duplicate_step_in_wfo l p = let ol = List.rev l in @@ -556,39 +616,33 @@ let get_duplicate_step_in_wfo l p = (* NOTE: here the n parameter is an approximation of the dependency between equations. To do things seriously we should maintain a dependency graph. This approximation is not perfect. *) - let add i n = + let add i = let p,_,_ = proof_of_id i in match p with | Exact _ -> true | _ -> try - let (pos,no) = Hashtbl.find h i in - Hashtbl.replace h i (pos,no+1); + let no = Hashtbl.find h i in + Hashtbl.replace h i (no+1); false - with Not_found -> Hashtbl.add h i (n,1);true + with Not_found -> Hashtbl.add h i 1;true in - let rec aux n = function - | Exact _ -> n + let rec aux = function + | Exact _ -> () | Step (_,(_,i1,(_,i2),_)) -> - let go_on_1 = add i1 n in - let go_on_2 = add i2 n in - max - (if go_on_1 then aux (n+1) (let p,_,_ = proof_of_id i1 in p) else n+1) - (if go_on_2 then aux (n+1) (let p,_,_ = proof_of_id i2 in p) else n+1) - in - let i = aux 0 p in - let _ = - List.fold_left - (fun acc (_,_,id,_,_) -> aux acc (let p,_,_ = proof_of_id id in p)) - i ol - in + let go_on_1 = add i1 in + let go_on_2 = add i2 in + if go_on_1 then aux (let p,_,_ = proof_of_id i1 in p); + if go_on_2 then aux (let p,_,_ = proof_of_id i2 in p) + in + aux p; + List.iter + (fun (_,_,id,_,_) -> aux (let p,_,_ = proof_of_id id in p)) + ol; (* now h is complete *) - let proofs = Hashtbl.fold (fun k (pos,count) acc->(k,pos,count)::acc) h [] in - let proofs = List.filter (fun (_,_,c) -> c > 1) proofs in - let proofs = - List.sort (fun (_,c1,_) (_,c2,_) -> Pervasives.compare c2 c1) proofs - in - List.map (fun (i,_,_) -> i) proofs + let proofs = Hashtbl.fold (fun k count acc-> (k,count)::acc) h [] in + let proofs = List.filter (fun (_,c) -> c > 1) proofs in + topological_sort (List.map (fun (i,_) -> i) proofs) ;; let build_proof_term h lift proof = @@ -613,11 +667,11 @@ let build_proof_term h lift proof = | _ -> assert false in let p = build_proof_step lift subst p1 p2 pos l r pred in -(* let cond = (not (List.mem 302 (Utils.metas_of_term p)) || id1 = 8 || id1 = 132) in - if not cond then - prerr_endline ("ERROR " ^ string_of_int id1 ^ " " ^ string_of_int id2); - assert cond;*) - p +(* let cond = (not (List.mem 302 (Utils.metas_of_term p)) || id1 = 8 || id1 = 132) in + if not cond then + prerr_endline ("ERROR " ^ string_of_int id1 ^ " " ^ string_of_int id2); + assert cond;*) + p in aux proof ;; @@ -678,13 +732,14 @@ let build_goal_proof l initial ty se = cic, p)) lets (letsno-1,initial) in - (*canonical (contextualize_rewrites proof (CicSubstitution.lift letsno ty))*)proof, se + canonical (contextualize_rewrites proof (CicSubstitution.lift letsno ty)), + se ;; let refl_proof ty term = Cic.Appl [Cic.MutConstruct - (LibraryObjects.eq_URI (), 0, 1, []); + (Utils.eq_URI (), 0, 1, []); ty; term] ;; @@ -711,9 +766,10 @@ let relocate newmeta menv to_be_relocated = let fix_metas newmeta eq = let w, p, (ty, left, right, o), menv,_ = open_equality eq in let to_be_relocated = +(* List.map (fun i ,_,_ -> i) menv *) HExtlib.list_uniq (List.sort Pervasives.compare - (Utils.metas_of_term left @ Utils.metas_of_term right)) + (Utils.metas_of_term left @ Utils.metas_of_term right)) in let subst, metasenv, newmeta = relocate newmeta menv to_be_relocated in let ty = Subst.apply_subst subst ty in @@ -735,6 +791,7 @@ let meta_convertibility_aux table t1 t2 = let rec aux ((table_l, table_r) as table) t1 t2 = match t1, t2 with | C.Meta (m1, tl1), C.Meta (m2, tl2) -> + let tl1, tl2 = [],[] in let m1_binding, table_l = try List.assoc m1 table_l, table_l with Not_found -> m2, (m1, m2)::table_l @@ -858,14 +915,14 @@ let meta_convertibility t1 t2 = exception TermIsNotAnEquality;; let term_is_equality term = - let iseq uri = UriManager.eq uri (LibraryObjects.eq_URI ()) in + let iseq uri = UriManager.eq uri (Utils.eq_URI ()) in match term with | Cic.Appl [Cic.MutInd (uri, _, _); _; _; _] when iseq uri -> true | _ -> false ;; let equality_of_term proof term = - let eq_uri = LibraryObjects.eq_URI () in + let eq_uri = Utils.eq_URI () in let iseq uri = UriManager.eq uri eq_uri in match term with | Cic.Appl [Cic.MutInd (uri, _, _); ty; t1; t2] when iseq uri -> @@ -897,7 +954,7 @@ let term_of_equality equality = let argsno = List.length menv in let t = CicSubstitution.lift argsno - (Cic.Appl [Cic.MutInd (LibraryObjects.eq_URI (), 0, []); ty; left; right]) + (Cic.Appl [Cic.MutInd (Utils.eq_URI (), 0, []); ty; left; right]) in snd ( List.fold_right