X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fhelena%2Fsrc%2Fbasic_rg%2FbrgReduction.ml;h=ffe223ab5ba02de662a2eea8d134241b8b6fe2b9;hb=88977b2d546e547e23b046792fe2ad8f6ff192a4;hp=98747ab55a810f10ee463d28cb8270f56dd16a76;hpb=95872555aaa040a22ad2d93cb1278f79e20da70c;p=helm.git diff --git a/helm/software/helena/src/basic_rg/brgReduction.ml b/helm/software/helena/src/basic_rg/brgReduction.ml index 98747ab55..ffe223ab5 100644 --- a/helm/software/helena/src/basic_rg/brgReduction.ml +++ b/helm/software/helena/src/basic_rg/brgReduction.ml @@ -11,49 +11,57 @@ module U = NUri module C = Cps -module W = Share +module S = Share module L = Log +module G = Options +module H = Hierarchy +module N = Layer module E = Entity -module N = Level module O = Output -module Q = Ccs -module S = Status module B = Brg module BO = BrgOutput module BE = BrgEnvironment -type kam = { - e: B.lenv; (* environment *) - s: (B.lenv * B.term) list; (* stack *) - d: int (* depth *) +type rtm = { + e: B.lenv; (* environment *) + s: (B.lenv * B.term) list; (* stack *) + l: int; (* level *) + n: int option; (* expected type iterations *) } +type message = (rtm, B.term) L.message + (* Internal functions *******************************************************) let level = 5 -let log1 s c t = - let sc, st = s ^ " in the environment", "the term" in - L.log BO.specs level (L.et_items1 sc c st t) +let sublevel = succ level + +let log1 st s c t = + let s1, s2 = s ^ " in the environment", "the term" in + L.log st BO.specs (pred level) (L.et_items1 s1 c s2 t) -let log2 s cu u ct t = - let s1, s2, s3 = s ^ " in the environment", "the term", "and in the environment" in - L.log BO.specs level (L.et_items2 s1 cu s2 u ~sc2:s3 ~c2:ct s2 t) +let log2 st s cu u ct t = + let s1, s2, s3 = s ^ " in the environment (expected)", "the term", "and in the environment (inferred)" in + L.log st BO.specs (pred level) (L.et_items2 s1 cu s2 u ~sc2:s3 ~c2:ct s2 t) -let rec list_and map = function +let rec list_and f map = function | hd1 :: tl1, hd2 :: tl2 -> - if map hd1 hd2 then list_and map (tl1, tl2) else false - | l1, l2 -> l1 = l2 + let f b = f (b && map hd1 hd2) in + list_and f map (tl1, tl2) + | l1, l2 -> f (l1 = l2) + +let zero = Some 0 (* check closure *) let are_alpha_convertible err f t1 t2 = let rec aux f = function - | B.Sort (_, p1), B.Sort (_, p2) + | B.Sort p1, B.Sort p2 | B.LRef (_, p1), B.LRef (_, p2) -> if p1 = p2 then f () else err () | B.GRef (_, u1), B.GRef (_, u2) -> if U.eq u1 u2 then f () else err () - | B.Cast (_, v1, t1), B.Cast (_, v2, t2) + | B.Cast (v1, t1), B.Cast (v2, t2) | B.Appl (_, v1, t1), B.Appl (_, v2, t2) -> let f _ = aux f (t1, t2) in aux f (v1, v2) @@ -62,113 +70,189 @@ let are_alpha_convertible err f t1 t2 = aux_bind f (b1, b2) | _ -> err () and aux_bind f = function - | B.Abbr v1, B.Abbr v2 -> aux f (v1, v2) - | B.Abst (n1, v1), B.Abst (n2, v2) when n1 = n2 -> aux f (v1, v2) - | B.Void, B.Void -> f () - | _ -> err () + | B.Abbr v1, B.Abbr v2 -> aux f (v1, v2) + | B.Abst (r1, n1, v1), B.Abst (r2, n2, v2) when r1 = r2 && n1 = n2 -> aux f (v1, v2) + | B.Void, B.Void -> f () + | _ -> err () in - if W.eq t1 t2 then f () else aux f (t1, t2) + if S.eq t1 t2 then f () else aux f (t1, t2) + +let assert_tstep m vo = match m.n with + | Some n -> n > 0 + | None -> vo + +let tstep m = match m.n with + | Some n -> {m with n = Some (pred n)} + | None -> m + +let tsteps m = match m.n with + | Some n -> n + | None -> 0 let get m i = - let _, c, a, b = B.get m.e i in c, a, b + let _, c, a, _, b = B.get m.e i in c, a, b (* to share *) -let rec step st m x = -(* L.warn "entering R.step"; *) - match x with - | B.Sort _ -> m, None, x - | B.GRef (_, uri) -> - begin match BE.get_entity uri with - | _, _, E.Abbr v when st.S.delta -> - O.add ~gdelta:1 (); step st m v - | _, _, E.Abst (_, w) when st.S.rt -> - O.add ~grt:1 (); step st m w - | a, _, E.Abbr v -> - let e = E.apix C.err C.start a in - m, Some (e, a, B.Abbr v), x - | a, _, E.Abst (n, w) -> - let e = E.apix C.err C.start a in - m, Some (e, a, B.Abst (n, w)), x - | _, _, E.Void -> assert false +let rec step st m r = +IFDEF TRACE THEN + if !G.ct >= sublevel then + log1 st (Printf.sprintf "entering R.step: l=%u, n=%s," m.l (match m.n with Some n -> string_of_int n | None -> "infinite")) m.e r +ELSE () END; + match r with + | B.Sort k -> + if assert_tstep m false then + step st (tstep m) (B.Sort (H.apply k)) + else m, r, None + | B.GRef (_, u) -> + begin match BE.get_entity u with + | _, a, _, E.Abbr (_, v) -> + m, B.gref a u, Some v + | _, _, _, E.Abst (_, w) -> + if assert_tstep m true then begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~grt:1 () +ELSE () END; + step st (tstep m) w + end else + m, r, None + | _, _, _, E.Void -> + assert false end - | B.LRef (_, i) -> + | B.LRef (_, i) -> begin match get m i with - | c, _, B.Abbr v -> - O.add ~ldelta:1 (); + | c, _, B.Abbr v -> +IFDEF SUMMARY THEN + if !G.summary then O.add ~ldelta:1 () +ELSE () END; step st {m with e = c} v - | c, _, B.Abst (_, w) when st.S.rt -> - O.add ~lrt:1 (); - step st {m with e = c} w - | c, _, B.Void -> + | c, a, B.Abst (_, _, w) -> + if assert_tstep m true then begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~lrt:1 () +ELSE () END; + step st {(tstep m) with e = c} w + end else + m, B.lref a i, None + | _, _, B.Void -> assert false - | c, a, (B.Abst _ as b) -> - let e = E.apix C.err C.start a in - {m with e = c}, Some (e, a, b), x end - | B.Cast (_, _, t) -> - O.add ~tau:1 (); - step st m t - | B.Appl (_, v, t) -> + | B.Cast (u, t) -> + if assert_tstep m false then begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~e:1 () +ELSE () END; + step st (tstep m) u + end else begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~epsilon:1 () +ELSE () END; + step st m t + end + | B.Appl (_, v, t) -> step st {m with s = (m.e, v) :: m.s} t - | B.Bind (a, B.Abst (n, w), t) -> - begin match m.s with - | [] -> m, None, x + | B.Bind (y, B.Abst (false, n, w), t) -> + let i = tsteps m in +IFDEF SUMMARY THEN + if !G.summary then O.add ~x:i () +ELSE () END; + let n = if i = 0 then n else N.minus st n i in + let r = B.Bind (y, B.Abst (true, n, w), t) in + step st m r + | B.Bind (y, B.Abst (true, n, w), t) -> + if !G.si || N.is_not_zero st n then begin match m.s with + | [] -> + m, B.Bind (y, B.Abst (true, n, w), t), None | (c, v) :: s -> - if N.is_zero n then Q.add_nonzero st.S.cc a; - O.add ~beta:1 ~theta:(List.length s) (); - let e = B.push m.e c a (B.abbr v) (* (B.Cast ([], w, v)) *) in +IFDEF SUMMARY THEN + if !G.summary then O.add ~beta:1 ~theta:(List.length s) () +ELSE () END; + let v = B.Cast (w, v) in + let e = B.push m.e c E.empty_node y (B.abbr v) in step st {m with e = e; s = s} t + end else begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~upsilon:1 () +ELSE () END; + let e = B.push m.e m.e E.empty_node y B.Void in (**) (* this is wrong in general *) + step st {m with e = e} t end - | B.Bind (a, b, t) -> - O.add ~theta:(List.length m.s) (); - let e = B.push m.e m.e a b in + | B.Bind (y, b, t) -> +IFDEF SUMMARY THEN + if !G.summary then O.add ~theta:(List.length m.s) () +ELSE () END; + let e = B.push m.e m.e E.empty_node y b in step st {m with e = e} t -let push m a b = - assert (m.s = []); - let a, d = match b with - | B.Abst _ -> E.Apix m.d :: a, succ m.d - | b -> a, m.d +let assert_iterations m1 m2 = + m1.n = m2.n + +let reset m ?(e=m.e) n = + {m with e = e; n = n; s = []} + +let push m y b = + let a, l = match b with + | B.Abst _ -> E.node_attrs ~apix:m.l (), succ m.l + | _ -> E.empty_node, m.l in - let e = B.push m.e m.e a b in - {m with e = e; d = d} - -let rec ac_nfs st (m1, r1, u) (m2, r2, t) = - log2 "Now converting nfs" m1.e u m2.e t; - match r1, u, r2, t with - | _, B.Sort (_, h1), _, B.Sort (_, h2) -> - h1 = h2 - | Some (e1, _, B.Abst _), _, Some (e2, _, B.Abst _), _ -> + let e = B.push m.e m.e a y b in + {m with e = e; l = l} + +let rec ac_nfs st (m1, t1, r1) (m2, t2, r2) = +IFDEF TRACE THEN + if !G.ct >= level then log2 st "Now converting nfs" m1.e t1 m2.e t2 +ELSE () END; + match t1, r1, t2, r2 with + | B.Sort k1, _, B.Sort k2, _ -> + k1 = k2 + | B.LRef ({E.n_apix = e1}, _), _, + B.LRef ({E.n_apix = e2}, _), _ -> if e1 = e2 then ac_stacks st m1 m2 else false - | Some (e1, _, B.Abbr v1), _, Some (e2, _, B.Abbr v2), _ -> - if e1 = e2 then - if ac_stacks st m1 m2 then true else begin - O.add ~gdelta:2 (); ac st m1 v1 m2 v2 - end - else if e1 < e2 then begin - O.add ~gdelta:1 (); - ac_nfs st (m1, r1, u) (step st m2 v2) - end else begin - O.add ~gdelta:1 (); - ac_nfs st (step st m1 v1) (m2, r2, t) + | B.GRef (_, u1), None, B.GRef (_, u2), None -> + if U.eq u1 u2 && assert_iterations m1 m2 then ac_stacks st m1 m2 else false + | B.GRef ({E.n_apix = e1}, u1), Some v1, + B.GRef ({E.n_apix = e2}, u2), Some v2 -> + if U.eq u1 u2 && assert_iterations m1 m2 && ac_stacks st m1 m2 then true + else if e1 < e2 then begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~gdelta:1 () +ELSE () END; + ac_nfs st (m1, t1, r1) (step st m2 v2) + end else if e2 < e1 then begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~gdelta:1 () +ELSE () END; + ac_nfs st (step st m1 v1) (m2, t2, r2) + end else begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~gdelta:2 () +ELSE () END; + ac st m1 v1 m2 v2 end - | _, _, Some (_, _, B.Abbr v2), _ -> - O.add ~gdelta:1 (); - ac_nfs st (m1, r1, u) (step st m2 v2) - | Some (_, _, B.Abbr v1), _, _, _ -> - O.add ~gdelta:1 (); - ac_nfs st (step st m1 v1) (m2, r2, t) - | _, B.Bind (a1, (B.Abst (n1, w1) as b1), t1), - _, B.Bind (a2, (B.Abst (n2, w2) as b2), t2) -> - if n1 = n2 then () else Q.add_equal st.S.cc a1 a2; - if ac {st with S.si = false} m1 w1 m2 w2 then - ac st (push m1 a1 b1) t1 (push m2 a2 b2) t2 + | _, _, B.GRef _, Some v2 -> +IFDEF SUMMARY THEN + if !G.summary then O.add ~gdelta:1 () +ELSE () END; + ac_nfs st (m1, t1, r1) (step st m2 v2) + | B.GRef _, Some v1, _, _ -> +IFDEF SUMMARY THEN + if !G.summary then O.add ~gdelta:1 () +ELSE () END; + ac_nfs st (step st m1 v1) (m2, t2, r2) + | B.Bind (y1, (B.Abst (true, n1, w1) as b1), t1), _, + B.Bind (y2, (B.Abst (true, n2, w2) as b2), t2), _ -> + if ((!G.cc && N.assert_equal st n1 n2) || N.are_equal st n1 n2) && + ac st (reset m1 zero) w1 (reset m2 zero) w2 + then ac st (push m1 y1 b1) t1 (push m2 y2 b2) t2 else false - | _, B.Sort _, _, B.Bind (a, (B.Abst (n, _) as b), t) -> - if N.is_zero n then () else Q.add_zero st.S.cc a; - O.add ~si:1 (); - ac st (push m1 a b) u (push m2 a b) t - | _ -> false + | B.Sort _, _, B.Bind (y, B.Abst (true, n, _), t), _ -> + if !G.si then + if !G.cc && not (N.assert_zero st n) then false else begin +IFDEF SUMMARY THEN + if !G.summary then O.add ~upsilon:1 () +ELSE () END; + ac st (push m1 y B.Void) t1 (push m2 y B.Void) t end + else false + | _ -> false and ac st m1 t1 m2 t2 = (* L.warn "entering R.are_convertible"; *) @@ -176,40 +260,53 @@ and ac st m1 t1 m2 t2 = and ac_stacks st m1 m2 = (* L.warn "entering R.are_convertible_stacks"; *) - if List.length m1.s <> List.length m2.s then false else let map (c1, v1) (c2, v2) = - let m1, m2 = {m1 with e = c1; s = []}, {m2 with e = c2; s = []} in - ac {st with S.si = false} m1 v1 m2 v2 + let m1, m2 = reset m1 ~e:c1 zero, reset m2 ~e:c2 zero in + ac st m1 v1 m2 v2 in - list_and map (m1.s, m2.s) + list_and C.start map (m1.s, m2.s) + +let rec ih_nfs st (m, t, r) = + match t, r with + | B.GRef _, Some v -> +IFDEF SUMMARY THEN + if !G.summary then O.add ~gdelta:1 () +ELSE () END; + ih st m v + | _ -> m, t + +and ih st m t = ih_nfs st (step st m t) (* Interface functions ******************************************************) -let empty_kam = { - e = B.empty; s = []; d = 0 +let empty_rtm = { + e = B.empty; s = []; l = 0; n = None } let get m i = assert (m.s = []); - let _, _, _, b = B.get m.e i in b + let _, _, _, _, b = B.get m.e i in b -let xwhd st m t = - L.box level; log1 "Now scanning" m.e t; - let m, _, t = step {st with S.delta = true; S.rt = true} m t in - L.unbox level; m, t +let xwhd st m n t = +IFDEF TRACE THEN + if !G.ct >= level then log1 st "Now scanning" m.e t +ELSE () END; + ih st (reset m n) t -let are_convertible st mu u mw w = - L.box level; log2 "Now converting" mu.e u mw.e w; - let r = ac {st with S.delta = st.S.expand; S.rt = false} mu u mw w in - L.unbox level; r +let are_convertible st m1 n1 t1 m2 n2 t2 = +IFDEF TRACE THEN + if !G.ct >= level then log2 st "Now converting" m1.e t1 m2.e t2 +ELSE () END; + let r = ac st (reset m1 n1) t1 (reset m2 n2) t2 in + r (* let err _ = in - if W.eq mu mw then are_alpha_convertible err f u w else err () *) + if S.eq mu mw then are_alpha_convertible err f u w else err () *) (* error reporting **********************************************************) -let pp_term m frm t = BO.specs.L.pp_term m.e frm t +let pp_term st m och t = BO.specs.L.pp_term st m.e och t -let pp_lenv frm m = BO.specs.L.pp_lenv frm m.e +let pp_lenv st och m = BO.specs.L.pp_lenv st och m.e let specs = { L.pp_term = pp_term; L.pp_lenv = pp_lenv