X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2FLAMBDA-TYPES%2FLambdaDelta-1%2Fclear%2Ffwd.ma;h=ede997e9537d028848be2d0996a0fd3c4c80ff9b;hb=89519c7b52e06304a94019dd528925300380cdc0;hp=c0316133067cde403eff274368ed93692876cbce;hpb=e92710b1d9774a6491122668c8463b8658114610;p=helm.git diff --git a/helm/software/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/clear/fwd.ma b/helm/software/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/clear/fwd.ma index c03161330..ede997e95 100644 --- a/helm/software/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/clear/fwd.ma +++ b/helm/software/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/clear/fwd.ma @@ -21,93 +21,85 @@ theorem clear_gen_sort: Prop).P))) \def \lambda (x: C).(\lambda (n: nat).(\lambda (H: (clear (CSort n) x)).(\lambda -(P: Prop).(let H0 \def (match H in clear return (\lambda (c: C).(\lambda (c0: -C).(\lambda (_: (clear c c0)).((eq C c (CSort n)) \to ((eq C c0 x) \to P))))) -with [(clear_bind b e u) \Rightarrow (\lambda (H0: (eq C (CHead e (Bind b) u) -(CSort n))).(\lambda (H1: (eq C (CHead e (Bind b) u) x)).((let H2 \def -(eq_ind C (CHead e (Bind b) u) (\lambda (e0: C).(match e0 in C return +(P: Prop).(insert_eq C (CSort n) (\lambda (c: C).(clear c x)) (\lambda (_: +C).P) (\lambda (y: C).(\lambda (H0: (clear y x)).(clear_ind (\lambda (c: +C).(\lambda (_: C).((eq C c (CSort n)) \to P))) (\lambda (b: B).(\lambda (e: +C).(\lambda (u: T).(\lambda (H1: (eq C (CHead e (Bind b) u) (CSort n))).(let +H2 \def (eq_ind C (CHead e (Bind b) u) (\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead _ _ _) -\Rightarrow True])) I (CSort n) H0) in (False_ind ((eq C (CHead e (Bind b) u) -x) \to P) H2)) H1))) | (clear_flat e c H0 f u) \Rightarrow (\lambda (H1: (eq -C (CHead e (Flat f) u) (CSort n))).(\lambda (H2: (eq C c x)).((let H3 \def -(eq_ind C (CHead e (Flat f) u) (\lambda (e0: C).(match e0 in C return -(\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead _ _ _) -\Rightarrow True])) I (CSort n) H1) in (False_ind ((eq C c x) \to ((clear e -c) \to P)) H3)) H2 H0)))]) in (H0 (refl_equal C (CSort n)) (refl_equal C -x)))))). +\Rightarrow True])) I (CSort n) H1) in (False_ind P H2)))))) (\lambda (e: +C).(\lambda (c: C).(\lambda (_: (clear e c)).(\lambda (_: (((eq C e (CSort +n)) \to P))).(\lambda (f: F).(\lambda (u: T).(\lambda (H3: (eq C (CHead e +(Flat f) u) (CSort n))).(let H4 \def (eq_ind C (CHead e (Flat f) u) (\lambda +(ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) +\Rightarrow False | (CHead _ _ _) \Rightarrow True])) I (CSort n) H3) in +(False_ind P H4))))))))) y x H0))) H)))). theorem clear_gen_bind: \forall (b: B).(\forall (e: C).(\forall (x: C).(\forall (u: T).((clear (CHead e (Bind b) u) x) \to (eq C x (CHead e (Bind b) u)))))) \def \lambda (b: B).(\lambda (e: C).(\lambda (x: C).(\lambda (u: T).(\lambda (H: -(clear (CHead e (Bind b) u) x)).(let H0 \def (match H in clear return -(\lambda (c: C).(\lambda (c0: C).(\lambda (_: (clear c c0)).((eq C c (CHead e -(Bind b) u)) \to ((eq C c0 x) \to (eq C x (CHead e (Bind b) u))))))) with -[(clear_bind b0 e0 u0) \Rightarrow (\lambda (H0: (eq C (CHead e0 (Bind b0) -u0) (CHead e (Bind b) u))).(\lambda (H1: (eq C (CHead e0 (Bind b0) u0) -x)).((let H2 \def (f_equal C T (\lambda (e1: C).(match e1 in C return -(\lambda (_: C).T) with [(CSort _) \Rightarrow u0 | (CHead _ _ t) \Rightarrow -t])) (CHead e0 (Bind b0) u0) (CHead e (Bind b) u) H0) in ((let H3 \def +(clear (CHead e (Bind b) u) x)).(insert_eq C (CHead e (Bind b) u) (\lambda +(c: C).(clear c x)) (\lambda (c: C).(eq C x c)) (\lambda (y: C).(\lambda (H0: +(clear y x)).(clear_ind (\lambda (c: C).(\lambda (c0: C).((eq C c (CHead e +(Bind b) u)) \to (eq C c0 c)))) (\lambda (b0: B).(\lambda (e0: C).(\lambda +(u0: T).(\lambda (H1: (eq C (CHead e0 (Bind b0) u0) (CHead e (Bind b) +u))).(let H2 \def (f_equal C C (\lambda (e1: C).(match e1 in C return +(\lambda (_: C).C) with [(CSort _) \Rightarrow e0 | (CHead c _ _) \Rightarrow +c])) (CHead e0 (Bind b0) u0) (CHead e (Bind b) u) H1) in ((let H3 \def (f_equal C B (\lambda (e1: C).(match e1 in C return (\lambda (_: C).B) with [(CSort _) \Rightarrow b0 | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow -b0])])) (CHead e0 (Bind b0) u0) (CHead e (Bind b) u) H0) in ((let H4 \def -(f_equal C C (\lambda (e1: C).(match e1 in C return (\lambda (_: C).C) with -[(CSort _) \Rightarrow e0 | (CHead c _ _) \Rightarrow c])) (CHead e0 (Bind -b0) u0) (CHead e (Bind b) u) H0) in (eq_ind C e (\lambda (c: C).((eq B b0 b) -\to ((eq T u0 u) \to ((eq C (CHead c (Bind b0) u0) x) \to (eq C x (CHead e -(Bind b) u)))))) (\lambda (H5: (eq B b0 b)).(eq_ind B b (\lambda (b1: B).((eq -T u0 u) \to ((eq C (CHead e (Bind b1) u0) x) \to (eq C x (CHead e (Bind b) -u))))) (\lambda (H6: (eq T u0 u)).(eq_ind T u (\lambda (t: T).((eq C (CHead e -(Bind b) t) x) \to (eq C x (CHead e (Bind b) u)))) (\lambda (H7: (eq C (CHead -e (Bind b) u) x)).(eq_ind C (CHead e (Bind b) u) (\lambda (c: C).(eq C c -(CHead e (Bind b) u))) (refl_equal C (CHead e (Bind b) u)) x H7)) u0 (sym_eq -T u0 u H6))) b0 (sym_eq B b0 b H5))) e0 (sym_eq C e0 e H4))) H3)) H2)) H1))) -| (clear_flat e0 c H0 f u0) \Rightarrow (\lambda (H1: (eq C (CHead e0 (Flat -f) u0) (CHead e (Bind b) u))).(\lambda (H2: (eq C c x)).((let H3 \def (eq_ind -C (CHead e0 (Flat f) u0) (\lambda (e1: C).(match e1 in C return (\lambda (_: -C).Prop) with [(CSort _) \Rightarrow False | (CHead _ k _) \Rightarrow (match -k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat -_) \Rightarrow True])])) I (CHead e (Bind b) u) H1) in (False_ind ((eq C c x) -\to ((clear e0 c) \to (eq C x (CHead e (Bind b) u)))) H3)) H2 H0)))]) in (H0 -(refl_equal C (CHead e (Bind b) u)) (refl_equal C x))))))). +b0])])) (CHead e0 (Bind b0) u0) (CHead e (Bind b) u) H1) in ((let H4 \def +(f_equal C T (\lambda (e1: C).(match e1 in C return (\lambda (_: C).T) with +[(CSort _) \Rightarrow u0 | (CHead _ _ t) \Rightarrow t])) (CHead e0 (Bind +b0) u0) (CHead e (Bind b) u) H1) in (\lambda (H5: (eq B b0 b)).(\lambda (H6: +(eq C e0 e)).(eq_ind_r T u (\lambda (t: T).(eq C (CHead e0 (Bind b0) t) +(CHead e0 (Bind b0) t))) (eq_ind_r C e (\lambda (c: C).(eq C (CHead c (Bind +b0) u) (CHead c (Bind b0) u))) (eq_ind_r B b (\lambda (b1: B).(eq C (CHead e +(Bind b1) u) (CHead e (Bind b1) u))) (refl_equal C (CHead e (Bind b) u)) b0 +H5) e0 H6) u0 H4)))) H3)) H2)))))) (\lambda (e0: C).(\lambda (c: C).(\lambda +(_: (clear e0 c)).(\lambda (_: (((eq C e0 (CHead e (Bind b) u)) \to (eq C c +e0)))).(\lambda (f: F).(\lambda (u0: T).(\lambda (H3: (eq C (CHead e0 (Flat +f) u0) (CHead e (Bind b) u))).(let H4 \def (eq_ind C (CHead e0 (Flat f) u0) +(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) +\Rightarrow False | (CHead _ k _) \Rightarrow (match k in K return (\lambda +(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow +True])])) I (CHead e (Bind b) u) H3) in (False_ind (eq C c (CHead e0 (Flat f) +u0)) H4))))))))) y x H0))) H))))). theorem clear_gen_flat: \forall (f: F).(\forall (e: C).(\forall (x: C).(\forall (u: T).((clear (CHead e (Flat f) u) x) \to (clear e x))))) \def \lambda (f: F).(\lambda (e: C).(\lambda (x: C).(\lambda (u: T).(\lambda (H: -(clear (CHead e (Flat f) u) x)).(let H0 \def (match H in clear return -(\lambda (c: C).(\lambda (c0: C).(\lambda (_: (clear c c0)).((eq C c (CHead e -(Flat f) u)) \to ((eq C c0 x) \to (clear e x)))))) with [(clear_bind b e0 u0) -\Rightarrow (\lambda (H0: (eq C (CHead e0 (Bind b) u0) (CHead e (Flat f) -u))).(\lambda (H1: (eq C (CHead e0 (Bind b) u0) x)).((let H2 \def (eq_ind C -(CHead e0 (Bind b) u0) (\lambda (e1: C).(match e1 in C return (\lambda (_: -C).Prop) with [(CSort _) \Rightarrow False | (CHead _ k _) \Rightarrow (match -k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat -_) \Rightarrow False])])) I (CHead e (Flat f) u) H0) in (False_ind ((eq C -(CHead e0 (Bind b) u0) x) \to (clear e x)) H2)) H1))) | (clear_flat e0 c H0 -f0 u0) \Rightarrow (\lambda (H1: (eq C (CHead e0 (Flat f0) u0) (CHead e (Flat -f) u))).(\lambda (H2: (eq C c x)).((let H3 \def (f_equal C T (\lambda (e1: +(clear (CHead e (Flat f) u) x)).(insert_eq C (CHead e (Flat f) u) (\lambda +(c: C).(clear c x)) (\lambda (_: C).(clear e x)) (\lambda (y: C).(\lambda +(H0: (clear y x)).(clear_ind (\lambda (c: C).(\lambda (c0: C).((eq C c (CHead +e (Flat f) u)) \to (clear e c0)))) (\lambda (b: B).(\lambda (e0: C).(\lambda +(u0: T).(\lambda (H1: (eq C (CHead e0 (Bind b) u0) (CHead e (Flat f) +u))).(let H2 \def (eq_ind C (CHead e0 (Bind b) u0) (\lambda (ee: C).(match ee +in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead +_ k _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _) +\Rightarrow True | (Flat _) \Rightarrow False])])) I (CHead e (Flat f) u) H1) +in (False_ind (clear e (CHead e0 (Bind b) u0)) H2)))))) (\lambda (e0: +C).(\lambda (c: C).(\lambda (H1: (clear e0 c)).(\lambda (H2: (((eq C e0 +(CHead e (Flat f) u)) \to (clear e c)))).(\lambda (f0: F).(\lambda (u0: +T).(\lambda (H3: (eq C (CHead e0 (Flat f0) u0) (CHead e (Flat f) u))).(let H4 +\def (f_equal C C (\lambda (e1: C).(match e1 in C return (\lambda (_: C).C) +with [(CSort _) \Rightarrow e0 | (CHead c0 _ _) \Rightarrow c0])) (CHead e0 +(Flat f0) u0) (CHead e (Flat f) u) H3) in ((let H5 \def (f_equal C F (\lambda +(e1: C).(match e1 in C return (\lambda (_: C).F) with [(CSort _) \Rightarrow +f0 | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).F) with +[(Bind _) \Rightarrow f0 | (Flat f1) \Rightarrow f1])])) (CHead e0 (Flat f0) +u0) (CHead e (Flat f) u) H3) in ((let H6 \def (f_equal C T (\lambda (e1: C).(match e1 in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u0 | (CHead _ _ t) \Rightarrow t])) (CHead e0 (Flat f0) u0) (CHead e (Flat f) u) -H1) in ((let H4 \def (f_equal C F (\lambda (e1: C).(match e1 in C return -(\lambda (_: C).F) with [(CSort _) \Rightarrow f0 | (CHead _ k _) \Rightarrow -(match k in K return (\lambda (_: K).F) with [(Bind _) \Rightarrow f0 | (Flat -f1) \Rightarrow f1])])) (CHead e0 (Flat f0) u0) (CHead e (Flat f) u) H1) in -((let H5 \def (f_equal C C (\lambda (e1: C).(match e1 in C return (\lambda -(_: C).C) with [(CSort _) \Rightarrow e0 | (CHead c0 _ _) \Rightarrow c0])) -(CHead e0 (Flat f0) u0) (CHead e (Flat f) u) H1) in (eq_ind C e (\lambda (c0: -C).((eq F f0 f) \to ((eq T u0 u) \to ((eq C c x) \to ((clear c0 c) \to (clear -e x)))))) (\lambda (H6: (eq F f0 f)).(eq_ind F f (\lambda (_: F).((eq T u0 u) -\to ((eq C c x) \to ((clear e c) \to (clear e x))))) (\lambda (H7: (eq T u0 -u)).(eq_ind T u (\lambda (_: T).((eq C c x) \to ((clear e c) \to (clear e -x)))) (\lambda (H8: (eq C c x)).(eq_ind C x (\lambda (c0: C).((clear e c0) -\to (clear e x))) (\lambda (H9: (clear e x)).H9) c (sym_eq C c x H8))) u0 -(sym_eq T u0 u H7))) f0 (sym_eq F f0 f H6))) e0 (sym_eq C e0 e H5))) H4)) -H3)) H2 H0)))]) in (H0 (refl_equal C (CHead e (Flat f) u)) (refl_equal C -x))))))). +H3) in (\lambda (_: (eq F f0 f)).(\lambda (H8: (eq C e0 e)).(let H9 \def +(eq_ind C e0 (\lambda (c0: C).((eq C c0 (CHead e (Flat f) u)) \to (clear e +c))) H2 e H8) in (let H10 \def (eq_ind C e0 (\lambda (c0: C).(clear c0 c)) H1 +e H8) in H10))))) H5)) H4))))))))) y x H0))) H))))). theorem clear_gen_flat_r: \forall (f: F).(\forall (x: C).(\forall (e: C).(\forall (u: T).((clear x