X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2FLAMBDA-TYPES%2FLambdaDelta-1%2Fflt%2Fprops.ma;h=e6e148647d2fe2402865fc7d03f02271f581962f;hb=81432e2003b9c1514975e006775fe59056e125a4;hp=a11df495ddd112ef87e22c60a8302bc2a6cfc8db;hpb=831af787465e1bff886e22ee14b68c8f1bb0177c;p=helm.git diff --git a/helm/software/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/flt/props.ma b/helm/software/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/flt/props.ma index a11df495d..e6e148647 100644 --- a/helm/software/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/flt/props.ma +++ b/helm/software/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/flt/props.ma @@ -14,31 +14,27 @@ (* This file was automatically generated: do not edit *********************) -set "baseuri" "cic:/matita/LAMBDA-TYPES/LambdaDelta-1/flt/props". +include "LambdaDelta-1/flt/defs.ma". -include "flt/defs.ma". - -include "C/props.ma". +include "LambdaDelta-1/C/props.ma". theorem flt_thead_sx: \forall (k: K).(\forall (c: C).(\forall (u: T).(\forall (t: T).(flt c u c (THead k u t))))) \def - \lambda (_: K).(\lambda (c: C).(\lambda (u: T).(\lambda (t: T).(lt_le_S -(plus (cweight c) (tweight u)) (plus (cweight c) (S (plus (tweight u) -(tweight t)))) (plus_le_lt_compat (cweight c) (cweight c) (tweight u) (S -(plus (tweight u) (tweight t))) (le_n (cweight c)) (le_lt_n_Sm (tweight u) -(plus (tweight u) (tweight t)) (le_plus_l (tweight u) (tweight t)))))))). + \lambda (_: K).(\lambda (c: C).(\lambda (u: T).(\lambda (t: +T).(le_lt_plus_plus (cweight c) (cweight c) (tweight u) (S (plus (tweight u) +(tweight t))) (le_n (cweight c)) (le_n_S (tweight u) (plus (tweight u) +(tweight t)) (le_plus_l (tweight u) (tweight t))))))). theorem flt_thead_dx: \forall (k: K).(\forall (c: C).(\forall (u: T).(\forall (t: T).(flt c t c (THead k u t))))) \def - \lambda (_: K).(\lambda (c: C).(\lambda (u: T).(\lambda (t: T).(lt_le_S -(plus (cweight c) (tweight t)) (plus (cweight c) (S (plus (tweight u) -(tweight t)))) (plus_le_lt_compat (cweight c) (cweight c) (tweight t) (S -(plus (tweight u) (tweight t))) (le_n (cweight c)) (le_lt_n_Sm (tweight t) -(plus (tweight u) (tweight t)) (le_plus_r (tweight u) (tweight t)))))))). + \lambda (_: K).(\lambda (c: C).(\lambda (u: T).(\lambda (t: +T).(le_lt_plus_plus (cweight c) (cweight c) (tweight t) (S (plus (tweight u) +(tweight t))) (le_n (cweight c)) (le_n_S (tweight t) (plus (tweight u) +(tweight t)) (le_plus_r (tweight u) (tweight t))))))). theorem flt_shift: \forall (k: K).(\forall (c: C).(\forall (u: T).(\forall (t: T).(flt (CHead c @@ -50,7 +46,7 @@ k u) t c (THead k u t))))) (plus (cweight c) (tweight u)) (tweight t)) (\lambda (n: nat).(lt (plus (plus (cweight c) (tweight u)) (tweight t)) (S n))) (le_n (S (plus (plus (cweight c) (tweight u)) (tweight t)))) (plus (cweight c) (plus (tweight u) (tweight -t))) (plus_assoc (cweight c) (tweight u) (tweight t))) (plus (cweight c) (S +t))) (plus_assoc_l (cweight c) (tweight u) (tweight t))) (plus (cweight c) (S (plus (tweight u) (tweight t)))) (plus_n_Sm (cweight c) (plus (tweight u) (tweight t))))))). @@ -58,12 +54,8 @@ theorem flt_arith0: \forall (k: K).(\forall (c: C).(\forall (t: T).(\forall (i: nat).(flt c t (CHead c k t) (TLRef i))))) \def - \lambda (_: K).(\lambda (c: C).(\lambda (t: T).(\lambda (_: nat).(le_S_n (S -(plus (cweight c) (tweight t))) (plus (plus (cweight c) (tweight t)) (S O)) -(lt_le_S (S (plus (cweight c) (tweight t))) (S (plus (plus (cweight c) -(tweight t)) (S O))) (lt_n_S (plus (cweight c) (tweight t)) (plus (plus -(cweight c) (tweight t)) (S O)) (lt_x_plus_x_Sy (plus (cweight c) (tweight -t)) O))))))). + \lambda (_: K).(\lambda (c: C).(\lambda (t: T).(\lambda (_: +nat).(lt_x_plus_x_Sy (plus (cweight c) (tweight t)) O)))). theorem flt_arith1: \forall (k1: K).(\forall (c1: C).(\forall (c2: C).(\forall (t1: T).((cle @@ -77,7 +69,7 @@ K).(\lambda (t2: T).(\lambda (_: nat).(le_lt_trans (plus (cweight c1) (eq_ind_r nat (plus (S O) (plus (cweight c2) (tweight t2))) (\lambda (n: nat).(lt (cweight c2) n)) (le_lt_n_Sm (cweight c2) (plus (cweight c2) (tweight t2)) (le_plus_l (cweight c2) (tweight t2))) (plus (plus (cweight c2) -(tweight t2)) (S O)) (plus_comm (plus (cweight c2) (tweight t2)) (S +(tweight t2)) (S O)) (plus_sym (plus (cweight c2) (tweight t2)) (S O))))))))))). theorem flt_arith2: @@ -89,12 +81,18 @@ c1 t1 (CHead c2 k2 t2) (TLRef j))))))))) (H: (lt (plus (cweight c1) (tweight t1)) (plus (cweight c2) (S O)))).(\lambda (_: K).(\lambda (t2: T).(\lambda (_: nat).(lt_le_trans (plus (cweight c1) (tweight t1)) (plus (cweight c2) (S O)) (plus (plus (cweight c2) (tweight -t2)) (S O)) H (le_S_n (plus (cweight c2) (S O)) (plus (plus (cweight c2) -(tweight t2)) (S O)) (lt_le_S (plus (cweight c2) (S O)) (S (plus (plus -(cweight c2) (tweight t2)) (S O))) (le_lt_n_Sm (plus (cweight c2) (S O)) -(plus (plus (cweight c2) (tweight t2)) (S O)) (plus_le_compat (cweight c2) -(plus (cweight c2) (tweight t2)) (S O) (S O) (le_plus_l (cweight c2) (tweight -t2)) (le_n (S O)))))))))))))). +t2)) (S O)) H (le_plus_plus (cweight c2) (plus (cweight c2) (tweight t2)) (S +O) (S O) (le_plus_l (cweight c2) (tweight t2)) (le_n (S O))))))))))). + +theorem flt_trans: + \forall (c1: C).(\forall (c2: C).(\forall (t1: T).(\forall (t2: T).((flt c1 +t1 c2 t2) \to (\forall (c3: C).(\forall (t3: T).((flt c2 t2 c3 t3) \to (flt +c1 t1 c3 t3)))))))) +\def + \lambda (c1: C).(\lambda (c2: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda +(H: (lt (fweight c1 t1) (fweight c2 t2))).(\lambda (c3: C).(\lambda (t3: +T).(\lambda (H0: (lt (fweight c2 t2) (fweight c3 t3))).(lt_trans (fweight c1 +t1) (fweight c2 t2) (fweight c3 t3) H H0)))))))). theorem flt_wf__q_ind: \forall (P: ((C \to (T \to Prop)))).(((\forall (n: nat).((\lambda (P0: ((C