X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2FRELATIONAL%2FNPlus%2Finv.ma;h=cfba0a843551ca03c3099eb41a4a87006722f134;hb=d9824956d9132109ed5f23380a0a1f9c5181d18a;hp=68043c84a6ab65e66512910dcf46f5a0b356eab5;hpb=2b95f946837707c6ad30d1b8317d73c55cda3dc8;p=helm.git diff --git a/helm/software/matita/contribs/RELATIONAL/NPlus/inv.ma b/helm/software/matita/contribs/RELATIONAL/NPlus/inv.ma index 68043c84a..cfba0a843 100644 --- a/helm/software/matita/contribs/RELATIONAL/NPlus/inv.ma +++ b/helm/software/matita/contribs/RELATIONAL/NPlus/inv.ma @@ -12,123 +12,70 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/RELATIONAL/NPlus/inv". + include "NPlus/defs.ma". -(* primitive generation lemmas proved by elimination and inversion *) +(* Inversion lemmas *********************************************************) -theorem nplus_gen_zero_1: \forall q,r. (zero + q == r) \to q = r. - intros. elim H; clear H q r; intros; - [ reflexivity - | clear H1. auto new timeout=30 - ]. +theorem nplus_inv_zero_1: ∀q,r. zero ⊕ q ≍ r → q = r. + intros. elim H; clear H q r; autobatch. qed. -theorem nplus_gen_succ_1: \forall p,q,r. ((succ p) + q == r) \to - \exists s. r = (succ s) \land p + q == s. +theorem nplus_inv_succ_1: ∀p,q,r. succ p ⊕ q ≍ r → + ∃s. r = succ s ∧ p ⊕ q ≍ s. intros. elim H; clear H q r; intros; - [ - | clear H1. - decompose. - subst. - ]; apply ex_intro; [| auto new timeout=30 || auto new timeout=30 ]. (**) + [ autobatch depth = 3 + | clear H1; decompose; destruct; autobatch depth = 4 + ] qed. -theorem nplus_gen_zero_2: \forall p,r. (p + zero == r) \to p = r. - intros. inversion H; clear H; intros; - [ auto new timeout=30 - | clear H H1. - destruct H2. - ]. +theorem nplus_inv_zero_2: ∀p,r. p ⊕ zero ≍ r → p = r. + intros; inversion H; clear H; intros; destruct; autobatch. qed. -theorem nplus_gen_succ_2: \forall p,q,r. (p + (succ q) == r) \to - \exists s. r = (succ s) \land p + q == s. - intros. inversion H; clear H; intros; - [ destruct H. - | clear H1 H3 r. - destruct H2; clear H2. - subst. - apply ex_intro; [| auto new timeout=30 ] (**) - ]. +theorem nplus_inv_succ_2: ∀p,q,r. p ⊕ succ q ≍ r → + ∃s. r = succ s ∧ p ⊕ q ≍ s. + intros; inversion H; clear H; intros; destruct. + autobatch depth = 3. qed. -theorem nplus_gen_zero_3: \forall p,q. (p + q == zero) \to - p = zero \land q = zero. - intros. inversion H; clear H; intros; - [ subst. auto new timeout=30 - | clear H H1. - destruct H3. - ]. +theorem nplus_inv_zero_3: ∀p,q. p ⊕ q ≍ zero → + p = zero ∧ q = zero. + intros; inversion H; clear H; intros; destruct; autobatch. qed. -theorem nplus_gen_succ_3: \forall p,q,r. (p + q == (succ r)) \to - \exists s. p = succ s \land (s + q == r) \lor - q = succ s \land p + s == r. - intros. inversion H; clear H; intros; - [ subst. - | clear H1. - destruct H3. clear H3. - subst. - ]; apply ex_intro; [| auto new timeout=30 || auto new timeout=30 ] (**) +theorem nplus_inv_succ_3: ∀p,q,r. p ⊕ q ≍ succ r → + ∃s. p = succ s ∧ s ⊕ q ≍ r ∨ + q = succ s ∧ p ⊕ s ≍ r. + intros; inversion H; clear H; intros; destruct; + autobatch depth = 4. qed. -(* -(* alternative proofs invoking nplus_gen_2 *) -variant nplus_gen_zero_3_alt: \forall p,q. (p + q == zero) \to - p = zero \land q = zero. - intros 2. elim q; clear q; intros; - [ lapply linear nplus_gen_zero_2 to H as H0. - subst. auto new timeout=30 - | clear H. - lapply linear nplus_gen_succ_2 to H1 as H0. - decompose. - lapply linear eq_gen_zero_succ to H1 as H0. apply H0 - ]. -qed. +(* Corollaries to inversion lemmas ******************************************) -variant nplus_gen_succ_3_alt: \forall p,q,r. (p + q == (succ r)) \to - \exists s. p = succ s \land (s + q == r) \lor - q = succ s \land p + s == r. - intros 2. elim q; clear q; intros; - [ lapply linear nplus_gen_zero_2 to H as H0. - subst - | clear H. - lapply linear nplus_gen_succ_2 to H1 as H0. - decompose. - lapply linear eq_gen_succ_succ to H1 as H0. - subst - ]; apply ex_intro; [| auto new timeout=30 || auto new timeout=30 ]. (**) +theorem nplus_inv_succ_2_3: ∀p,q,r. + p ⊕ succ q ≍ succ r → p ⊕ q ≍ r. + intros; + lapply linear nplus_inv_succ_2 to H; decompose; destruct; autobatch. qed. -*) -(* other simplification lemmas *) -theorem nplus_gen_eq_2_3: \forall p,q. (p + q == q) \to p = zero. - intros 2. elim q; clear q; intros; - [ lapply linear nplus_gen_zero_2 to H as H0. - subst - | lapply linear nplus_gen_succ_2 to H1 as H0. - decompose. - destruct H2. clear H2. - subst - ]; auto new timeout=30. +theorem nplus_inv_succ_1_3: ∀p,q,r. + succ p ⊕ q ≍ succ r → p ⊕ q ≍ r. + intros; + lapply linear nplus_inv_succ_1 to H; decompose; destruct; autobatch. qed. -theorem nplus_gen_eq_1_3: \forall p,q. (p + q == p) \to q = zero. - intros 1. elim p; clear p; intros; - [ lapply linear nplus_gen_zero_1 to H as H0. - subst - | lapply linear nplus_gen_succ_1 to H1 as H0. - decompose. - destruct H2. clear H2. - subst - ]; auto new timeout=30. +theorem nplus_inv_eq_2_3: ∀p,q. p ⊕ q ≍ q → p = zero. + intros 2; elim q; clear q; + [ lapply linear nplus_inv_zero_2 to H + | lapply linear nplus_inv_succ_2_3 to H1 + ]; autobatch. qed. -theorem nplus_gen_succ_2_3: \forall p,q,r. - (p + (succ q) == (succ r)) \to p + q == r. - intros. - lapply linear nplus_gen_succ_2 to H. decompose. subst. - destruct H1. clear H1. subst. auto. +theorem nplus_inv_eq_1_3: ∀p,q. p ⊕ q ≍ p → q = zero. + intros 1; elim p; clear p; + [ lapply linear nplus_inv_zero_1 to H + | lapply linear nplus_inv_succ_1_3 to H1 + ]; autobatch. qed.