X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fcharacter%2Fpreamble.ma;h=e2656f6c2141f3e457854bd65727cc6062fc28a0;hb=03ebff6c48be2253ad32b3b57f4e1d2b02acda86;hp=34ac9671e9595811e3f253081701ac5a384aba95;hpb=04f75822f22c6c6522f6d81b412a212885a6ff72;p=helm.git diff --git a/helm/software/matita/contribs/character/preamble.ma b/helm/software/matita/contribs/character/preamble.ma index 34ac9671e..e2656f6c2 100644 --- a/helm/software/matita/contribs/character/preamble.ma +++ b/helm/software/matita/contribs/character/preamble.ma @@ -24,7 +24,7 @@ qed. theorem times_inv_O3_S: ∀x,y. 0 = x * (S y) → x = 0. intros; rewrite < times_n_Sm in H; - lapply linear plus_inv_O3 to H; decompose; destruct; autobatch. + lapply linear plus_inv_O3 to H; decompose;autobatch. qed. theorem not_3_divides_1: ∀n. 1 = n * 3 → False. @@ -33,35 +33,33 @@ theorem not_3_divides_1: ∀n. 1 = n * 3 → False. rewrite > sym_plus in Hcut; simplify in Hcut; destruct Hcut. qed. -theorem le_inv_S_S: ∀m,n. S m ≤ S n → m ≤ n. - intros; inversion H; clear H; intros; destruct; autobatch. -qed. +variant le_inv_S_S: ∀m,n. S m ≤ S n → m ≤ n +≝ le_S_S_to_le. theorem plus_inv_S_S_S: ∀x,y,z. S x = S y + S z → S y ≤ x ∧ S z ≤ x. - simplify; intros; destruct; - rewrite < plus_n_Sm in ⊢ (? (? ? %) ?); autobatch. + simplify; intros; destruct;autobatch. qed. theorem times_inv_S_m_SS: ∀k,n,m. S n = m * (S (S k)) → m ≤ n. intros 3; elim m names 0; clear m; simplify; intros; destruct; - clear H; apply le_S_S; rewrite < sym_times; simplify; - autobatch depth = 2. + clear H; autobatch by le_S_S, transitive_le, le_plus_n, le_plus_n_r. qed. theorem plus_3_S3n: ∀n. S (S n * 3) = 3 + S (n * 3). - intros; simplify; autobatch depth = 1. + intros; autobatch depth = 1. qed. theorem times_exp_x_y_Sz: ∀x,y,z. x * y \sup (S z) = (x * y \sup z) * y. - intros; simplify; autobatch depth = 1. -qed. + intros; autobatch depth = 1. +qed. definition acc_nat: (nat → Prop) → nat →Prop ≝ λP:nat→Prop. λn. ∀m. m ≤ n → P m. theorem wf_le: ∀P. P 0 → (∀n. acc_nat P n → P (S n)) → ∀n. acc_nat P n. unfold acc_nat; intros 4; elim n names 0; clear n; - [ intros; lapply linear le_n_O_to_eq to H2; destruct; autobatch + [ intros; autobatch by (eq_ind ? ? P), H, H2, le_n_O_to_eq. + (* lapply linear le_n_O_to_eq to H2; destruct; autobatch *) | intros 3; elim m; clear m; intros; clear H3; [ clear H H1; autobatch depth = 2 | clear H; lapply linear le_inv_S_S to H4; @@ -74,5 +72,5 @@ qed. theorem wf_nat_ind: ∀P:nat→Prop. P O → (∀n. (∀m. m ≤ n → P m) → P (S n)) → ∀n. P n. intros; lapply linear depth=2 wf_le to H, H1 as H0; - unfold acc_nat in H0; apply (H0 n n); autobatch depth = 1. + autobatch. qed.