X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fcprop_connectives.ma;h=09b9a6c67fb189d61070b5adf27f5f131bf5a547;hb=98c84d48f4511cb52c8dc03881e113bd4bd9c6ce;hp=a0a701694ccc9ba1c7bac93758cfb3b0527ef261;hpb=25aa80d913c903fcc270d05464cf3084b12d52a8;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/cprop_connectives.ma b/helm/software/matita/contribs/dama/dama/cprop_connectives.ma index a0a701694..09b9a6c67 100644 --- a/helm/software/matita/contribs/dama/dama/cprop_connectives.ma +++ b/helm/software/matita/contribs/dama/dama/cprop_connectives.ma @@ -13,6 +13,7 @@ (**************************************************************************) include "logic/equality.ma". +include "datatypes/constructors.ma". inductive Or (A,B:CProp) : CProp ≝ | Left : A → Or A B @@ -20,6 +21,25 @@ inductive Or (A,B:CProp) : CProp ≝ interpretation "constructive or" 'or x y = (Or x y). +inductive Or3 (A,B,C:CProp) : CProp ≝ + | Left3 : A → Or3 A B C + | Middle3 : B → Or3 A B C + | Right3 : C → Or3 A B C. + +interpretation "constructive ternary or" 'or3 x y z= (Or3 x y z). + +notation < "hvbox(a break ∨ b break ∨ c)" with precedence 35 for @{'or3 $a $b $c}. + +inductive Or4 (A,B,C,D:CProp) : CProp ≝ + | Left3 : A → Or4 A B C D + | Middle3 : B → Or4 A B C D + | Right3 : C → Or4 A B C D + | Extra3: D → Or4 A B C D. + +interpretation "constructive ternary or" 'or4 x y z t = (Or4 x y z t). + +notation < "hvbox(a break ∨ b break ∨ c break ∨ d)" with precedence 35 for @{'or4 $a $b $c $d}. + inductive And (A,B:CProp) : CProp ≝ | Conj : A → B → And A B. @@ -28,59 +48,38 @@ interpretation "constructive and" 'and x y = (And x y). inductive And3 (A,B,C:CProp) : CProp ≝ | Conj3 : A → B → C → And3 A B C. -notation < "a ∧ b ∧ c" with precedence 35 for @{'and3 $a $b $c}. +notation < "hvbox(a break ∧ b break ∧ c)" with precedence 35 for @{'and3 $a $b $c}. -interpretation "constructive ternary and" 'and3 x y z = (Conj3 x y z). +interpretation "constructive ternary and" 'and3 x y z = (And3 x y z). inductive And4 (A,B,C,D:CProp) : CProp ≝ | Conj4 : A → B → C → D → And4 A B C D. -notation < "a ∧ b ∧ c ∧ d" with precedence 35 for @{'and4 $a $b $c $d}. +notation < "hvbox(a break ∧ b break ∧ c break ∧ d)" with precedence 35 for @{'and4 $a $b $c $d}. -interpretation "constructive quaternary and" 'and4 x y z t = (Conj4 x y z t). - -coinductive product (A,B:Type) : Type ≝ pair : ∀a:A.∀b:B.product A B. - -notation "a \times b" left associative with precedence 70 for @{'product $a $b}. -interpretation "prod" 'product a b = (product a b). - -definition first : ∀A.∀P.A × P → A ≝ λA,P,s.match s with [pair x _ ⇒ x]. -definition second : ∀A.∀P.A × P → P ≝ λA,P,s.match s with [pair _ y ⇒ y]. - -interpretation "pair pi1" 'pi1 = (first _ _). -interpretation "pair pi2" 'pi2 = (second _ _). -interpretation "pair pi1" 'pi1a x = (first _ _ x). -interpretation "pair pi2" 'pi2a x = (second _ _ x). -interpretation "pair pi1" 'pi1b x y = (first _ _ x y). -interpretation "pair pi2" 'pi2b x y = (second _ _ x y). - -notation "hvbox(\langle term 19 a, break term 19 b\rangle)" -with precedence 90 for @{ 'pair $a $b}. -interpretation "pair" 'pair a b = (pair _ _ a b). +interpretation "constructive quaternary and" 'and4 x y z t = (And4 x y z t). inductive exT (A:Type) (P:A→CProp) : CProp ≝ ex_introT: ∀w:A. P w → exT A P. interpretation "CProp exists" 'exists \eta.x = (exT _ x). -interpretation "dependent pair" 'pair a b = (ex_introT _ _ a b). -notation < "'fst' \nbsp x" non associative with precedence 90 for @{'pi1a $x}. -notation < "'snd' \nbsp x" non associative with precedence 90 for @{'pi2a $x}. -notation < "'fst' \nbsp x \nbsp y" non associative with precedence 90 for @{'pi1b $x $y}. -notation < "'snd' \nbsp x \nbsp y" non associative with precedence 90 for @{'pi2b $x $y}. -notation > "'fst'" non associative with precedence 90 for @{'pi1}. -notation > "'snd'" non associative with precedence 90 for @{'pi2}. +notation "\ll term 19 a, break term 19 b \gg" +with precedence 90 for @{'dependent_pair $a $b}. +interpretation "dependent pair" 'dependent_pair a b = + (ex_introT _ _ a b). + definition pi1exT ≝ λA,P.λx:exT A P.match x with [ex_introT x _ ⇒ x]. definition pi2exT ≝ λA,P.λx:exT A P.match x return λx.P (pi1exT ?? x) with [ex_introT _ p ⇒ p]. -interpretation "exT fst" 'pi1 = (pi1exT _ _). -interpretation "exT fst" 'pi1a x = (pi1exT _ _ x). -interpretation "exT fst" 'pi1b x y = (pi1exT _ _ x y). -interpretation "exT snd" 'pi2 = (pi2exT _ _). -interpretation "exT snd" 'pi2a x = (pi2exT _ _ x). -interpretation "exT snd" 'pi2b x y = (pi2exT _ _ x y). +interpretation "exT \fst" 'pi1 = (pi1exT _ _). +interpretation "exT \fst" 'pi1a x = (pi1exT _ _ x). +interpretation "exT \fst" 'pi1b x y = (pi1exT _ _ x y). +interpretation "exT \snd" 'pi2 = (pi2exT _ _). +interpretation "exT \snd" 'pi2a x = (pi2exT _ _ x). +interpretation "exT \snd" 'pi2b x y = (pi2exT _ _ x y). inductive exT23 (A:Type) (P:A→CProp) (Q:A→CProp) (R:A→A→CProp) : CProp ≝ ex_introT23: ∀w,p:A. P w → Q p → R w p → exT23 A P Q R. @@ -90,12 +89,12 @@ definition pi1exT23 ≝ definition pi2exT23 ≝ λA,P,Q,R.λx:exT23 A P Q R.match x with [ex_introT23 _ x _ _ _ ⇒ x]. -interpretation "exT2 fst" 'pi1 = (pi1exT23 _ _ _ _). -interpretation "exT2 snd" 'pi2 = (pi2exT23 _ _ _ _). -interpretation "exT2 fst" 'pi1a x = (pi1exT23 _ _ _ _ x). -interpretation "exT2 snd" 'pi2a x = (pi2exT23 _ _ _ _ x). -interpretation "exT2 fst" 'pi1b x y = (pi1exT23 _ _ _ _ x y). -interpretation "exT2 snd" 'pi2b x y = (pi2exT23 _ _ _ _ x y). +interpretation "exT2 \fst" 'pi1 = (pi1exT23 _ _ _ _). +interpretation "exT2 \snd" 'pi2 = (pi2exT23 _ _ _ _). +interpretation "exT2 \fst" 'pi1a x = (pi1exT23 _ _ _ _ x). +interpretation "exT2 \snd" 'pi2a x = (pi2exT23 _ _ _ _ x). +interpretation "exT2 \fst" 'pi1b x y = (pi1exT23 _ _ _ _ x y). +interpretation "exT2 \snd" 'pi2b x y = (pi2exT23 _ _ _ _ x y). definition Not : CProp → Prop ≝ λx:CProp.x → False. @@ -113,3 +112,4 @@ definition antisymmetric ≝ λA:Type.λR:A→A→CProp.λeq:A→A→Prop.∀x:A definition reflexive ≝ λA:Type.λR:A→A→CProp.∀x:A.R x x. definition transitive ≝ λA:Type.λR:A→A→CProp.∀x,y,z:A.R x y → R y z → R x z. +