X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fcprop_connectives.ma;h=9e0e4b5fbb8e19c245c707d29f931923e91f2579;hb=f3ad825f16c02c0c5fca620980882e409871e6f1;hp=91a2335c7998f44e40589b0cbd7751c64db3d680;hpb=9eabe046c1182960de8cfdba96c5414224e3a61e;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/cprop_connectives.ma b/helm/software/matita/contribs/dama/dama/cprop_connectives.ma index 91a2335c7..9e0e4b5fb 100644 --- a/helm/software/matita/contribs/dama/dama/cprop_connectives.ma +++ b/helm/software/matita/contribs/dama/dama/cprop_connectives.ma @@ -15,7 +15,7 @@ include "logic/equality.ma". inductive Or (A,B:CProp) : CProp ≝ - Left : A → Or A B + | Left : A → Or A B | Right : B → Or A B. interpretation "constructive or" 'or x y = (Or x y). @@ -25,10 +25,76 @@ inductive And (A,B:CProp) : CProp ≝ interpretation "constructive and" 'and x y = (And x y). +inductive And3 (A,B,C:CProp) : CProp ≝ + | Conj3 : A → B → C → And3 A B C. + +notation < "a ∧ b ∧ c" left associative with precedence 35 for @{'and3 $a $b $c}. + +interpretation "constructive ternary and" 'and3 x y z = (Conj3 x y z). + +inductive And4 (A,B,C,D:CProp) : CProp ≝ + | Conj4 : A → B → C → D → And4 A B C D. + +notation < "a ∧ b ∧ c ∧ d" left associative with precedence 35 for @{'and4 $a $b $c $d}. + +interpretation "constructive quaternary and" 'and4 x y z t = (Conj4 x y z t). + +coinductive product (A,B:Type) : Type ≝ pair : ∀a:A.∀b:B.product A B. + +notation "a \times b" left associative with precedence 70 for @{'product $a $b}. +interpretation "prod" 'product a b = (product a b). + +definition first : ∀A.∀P.A × P → A ≝ λA,P,s.match s with [pair x _ ⇒ x]. +definition second : ∀A.∀P.A × P → P ≝ λA,P,s.match s with [pair _ y ⇒ y]. + +interpretation "pair pi1" 'pi1 = (first _ _). +interpretation "pair pi2" 'pi2 = (second _ _). +interpretation "pair pi1" 'pi1a x = (first _ _ x). +interpretation "pair pi2" 'pi2a x = (second _ _ x). +interpretation "pair pi1" 'pi1b x y = (first _ _ x y). +interpretation "pair pi2" 'pi2b x y = (second _ _ x y). + +notation "hvbox(\langle a, break b\rangle)" left associative with precedence 70 for @{ 'pair $a $b}. +interpretation "pair" 'pair a b = (pair _ _ a b). + inductive exT (A:Type) (P:A→CProp) : CProp ≝ ex_introT: ∀w:A. P w → exT A P. interpretation "CProp exists" 'exists \eta.x = (exT _ x). +interpretation "dependent pair" 'pair a b = (ex_introT _ _ a b). + +notation < "'fst' \nbsp x" non associative with precedence 90 for @{'pi1a $x}. +notation < "'snd' \nbsp x" non associative with precedence 90 for @{'pi2a $x}. +notation < "'fst' \nbsp x \nbsp y" non associative with precedence 90 for @{'pi1b $x $y}. +notation < "'snd' \nbsp x \nbsp y" non associative with precedence 90 for @{'pi2b $x $y}. +notation > "'fst'" non associative with precedence 90 for @{'pi1}. +notation > "'snd'" non associative with precedence 90 for @{'pi2}. + +definition pi1exT ≝ λA,P.λx:exT A P.match x with [ex_introT x _ ⇒ x]. +definition pi2exT ≝ + λA,P.λx:exT A P.match x return λx.P (pi1exT ?? x) with [ex_introT _ p ⇒ p]. + +interpretation "exT fst" 'pi1 = (pi1exT _ _). +interpretation "exT fst" 'pi1a x = (pi1exT _ _ x). +interpretation "exT fst" 'pi1b x y = (pi1exT _ _ x y). +interpretation "exT snd" 'pi2 = (pi2exT _ _). +interpretation "exT snd" 'pi2a x = (pi2exT _ _ x). +interpretation "exT snd" 'pi2b x y = (pi2exT _ _ x y). + +inductive exT23 (A:Type) (P:A→CProp) (Q:A→CProp) (R:A→A→CProp) : CProp ≝ + ex_introT23: ∀w,p:A. P w → Q p → R w p → exT23 A P Q R. + +definition pi1exT23 ≝ + λA,P,Q,R.λx:exT23 A P Q R.match x with [ex_introT23 x _ _ _ _ ⇒ x]. +definition pi2exT23 ≝ + λA,P,Q,R.λx:exT23 A P Q R.match x with [ex_introT23 _ x _ _ _ ⇒ x]. + +interpretation "exT2 fst" 'pi1 = (pi1exT23 _ _ _ _). +interpretation "exT2 snd" 'pi2 = (pi2exT23 _ _ _ _). +interpretation "exT2 fst" 'pi1a x = (pi1exT23 _ _ _ _ x). +interpretation "exT2 snd" 'pi2a x = (pi2exT23 _ _ _ _ x). +interpretation "exT2 fst" 'pi1b x y = (pi1exT23 _ _ _ _ x y). +interpretation "exT2 snd" 'pi2b x y = (pi2exT23 _ _ _ _ x y). definition Not : CProp → Prop ≝ λx:CProp.x → False. @@ -46,4 +112,3 @@ definition antisymmetric ≝ λA:Type.λR:A→A→CProp.λeq:A→A→Prop.∀x:A definition reflexive ≝ λA:Type.λR:A→A→CProp.∀x:A.R x x. definition transitive ≝ λA:Type.λR:A→A→CProp.∀x,y,z:A.R x y → R y z → R x z. -