X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fmodels%2Flist_support.ma;h=eb70322a9a30a0307aceb63500bf1d3085060392;hb=6d27950e804ea499909ae0fabceea99f35d118e9;hp=8dad0c436b9b224bcb73e7527e86bba5fde54e1b;hpb=8f4162a9db17a597d4fba49eb957009fc0268378;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/models/list_support.ma b/helm/software/matita/contribs/dama/dama/models/list_support.ma index 8dad0c436..eb70322a9 100644 --- a/helm/software/matita/contribs/dama/dama/models/list_support.ma +++ b/helm/software/matita/contribs/dama/dama/models/list_support.ma @@ -38,6 +38,11 @@ interpretation "len" 'len = (length _). notation < "\len \nbsp term 90 l" with precedence 69 for @{'len_appl $l}. interpretation "len appl" 'len_appl l = (length _ l). +lemma mk_list_ext: ∀T:Type.∀f1,f2:nat→T.∀n. (∀x.x H1; [2: apply le_n] +apply eq_f; apply H; intros; apply H1; apply (trans_le ??? H2); apply le_S; apply le_n; +qed. + lemma len_mk_list : ∀T:Type.∀f:nat→T.∀n.\len (\mk_list f n) = n. intros; elim n; [reflexivity] simplify; rewrite > H; reflexivity; qed. @@ -68,7 +73,7 @@ lemma len_append: ∀T:Type.∀l1,l2:list T. \len (l1@l2) = \len l1 + \len l2. intros; elim l1; [reflexivity] simplify; rewrite < H; reflexivity; qed. -inductive non_empty_list (A:Type) : list A → Type := +coinductive non_empty_list (A:Type) : list A → Type := | show_head: ∀x,l. non_empty_list A (x::l). lemma len_gt_non_empty : @@ -97,21 +102,6 @@ cases i in H2; destruct H6; simplify; assumption;] qed. -(* -lemma all_bases_positive : ∀f:q_f.∀i. OQ < nth_base (bars f) (S i). -intro f; generalize in match (bars_begin_OQ f); generalize in match (bars_sorted f); -cases (bars_not_nil f); intros; -cases (cmp_nat i (len l)); -[1: lapply (sorted_tail_bigger ?? H ? H2) as K; simplify in H1; - rewrite > H1 in K; apply K; -|2: rewrite > H2; simplify; elim l; simplify; [apply (q_pos_OQ one)] - assumption; -|3: simplify; elim l in i H2;[simplify; rewrite > nth_nil; apply (q_pos_OQ one)] - cases n in H3; intros; [cases (not_le_Sn_O ? H3)] apply (H2 n1); - apply (le_S_S_to_le ?? H3);] -qed. -*) - (* move in nat/ *) lemma lt_n_plus_n_Sm : ∀n,m:nat.n < n + S m. intros; rewrite > sym_plus; apply (le_S_S n (m+n)); alias id "le_plus_n" = "cic:/matita/nat/le_arith/le_plus_n.con". @@ -162,7 +152,7 @@ intros 2 (r l); elim l; |2: apply H3; assumption]] qed. -inductive cases_bool (p:bool) : bool → CProp ≝ +coinductive cases_bool (p:bool) : bool → CProp ≝ | case_true : p = true → cases_bool p true | cases_false : p = false → cases_bool p false. @@ -170,7 +160,23 @@ lemma case_b : ∀A:Type.∀f:A → bool. ∀x.cases_bool (f x) (f x). intros; cases (f x);[left;|right] reflexivity; qed. -include "cprop_connectives.ma". +coinductive break_spec (T : Type) (n : nat) (l : list T) : list T → CProp ≝ +| break_to: ∀l1,x,l2. \len l1 = n → l = l1 @ [x] @ l2 → break_spec T n l l. + +lemma list_break: ∀T,n,l. n < \len l → break_spec T n l l. +intros 2; elim n; +[1: elim l in H; [cases (not_le_Sn_O ? H)] + apply (break_to ?? ? [] a l1); reflexivity; +|2: cases (H l); [2: apply lt_S_to_lt; assumption;] cases l2 in H3; intros; + [1: rewrite < H2 in H1; rewrite > H3 in H1; rewrite > append_nil in H1; + rewrite > len_append in H1; rewrite > plus_n_SO in H1; + cases (not_le_Sn_n ? H1); + |2: apply (break_to ?? ? (l1@[x]) t l3); + [2: simplify; rewrite > associative_append; assumption; + |1: rewrite < H2; rewrite > len_append; rewrite > plus_n_SO; reflexivity]]] +qed. + +include "logic/cprop_connectives.ma". definition eject_N ≝ λP.λp:∃x:nat.P x.match p with [ex_introT p _ ⇒ p]. @@ -178,7 +184,7 @@ coercion eject_N. definition inject_N ≝ λP.λp:nat.λh:P p. ex_introT ? P p h. coercion inject_N with 0 1 nocomposites. -inductive find_spec (T:Type) (P:T→bool) (l:list T) (d:T) (res : nat) : nat → CProp ≝ +coinductive find_spec (T:Type) (P:T→bool) (l:list T) (d:T) (res : nat) : nat → CProp ≝ | found: ∀i. i < \len l → P (\nth l d i) = true → res = i → (∀j. j < i → P (\nth l d j) = false) → find_spec T P l d res i @@ -241,3 +247,36 @@ intros; cases (find_lemma ? f l t); apply w; qed. lemma cases_find: ∀T,P,l,d. find_spec T P l d (find T P l d) (find T P l d). intros; unfold find; cases (find_lemma T P l d); simplify; assumption; qed. + +lemma list_elim_with_len: + ∀T:Type.∀P: nat → list T → CProp. + P O [] → (∀l,a,n.P (\len l) l → P (S n) (a::l)) → + ∀l.P (\len l) l. +intros;elim l; [assumption] simplify; apply H1; apply H2; +qed. + +lemma sorted_near: + ∀r,l. sorted r l → ∀i,d. S i < \len l → r (\nth l d i) (\nth l d (S i)). + intros 3; elim H; + [1: cases (not_le_Sn_O ? H1); + |2: simplify in H1; cases (not_le_Sn_O ? (le_S_S_to_le ?? H1)); + |3: simplify; cases i in H4; intros; [apply H1] + apply H3; apply le_S_S_to_le; apply H4] +qed. + +definition last ≝ + λT:Type.λd.λl:list T. \nth l d (pred (\len l)). + +notation > "\last" non associative with precedence 90 for @{'last}. +notation < "\last d l" non associative with precedence 70 for @{'last2 $d $l}. +interpretation "list last" 'last = (last _). +interpretation "list last applied" 'last2 d l = (last _ d l). + +definition head ≝ + λT:Type.λd.λl:list T.\nth l d O. + +notation > "\hd" non associative with precedence 90 for @{'hd}. +notation < "\hd d l" non associative with precedence 70 for @{'hd2 $d $l}. +interpretation "list head" 'hd = (head _). +interpretation "list head applied" 'hd2 d l = (head _ d l). +