X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fmodels%2Fnat_dedekind_sigma_complete.ma;h=9681b4d93618b6fc4ef7a66dd21796b2fe5d0b3e;hb=7deb4b1f322850b8ff03d5626f7828736d074ec8;hp=bc009b5c6fc6bcdb67dee6c63d84ddd7e819eed4;hpb=ca41435a6021292ccba239aa173651c0be705b45;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/models/nat_dedekind_sigma_complete.ma b/helm/software/matita/contribs/dama/dama/models/nat_dedekind_sigma_complete.ma index bc009b5c6..9681b4d93 100644 --- a/helm/software/matita/contribs/dama/dama/models/nat_dedekind_sigma_complete.ma +++ b/helm/software/matita/contribs/dama/dama/models/nat_dedekind_sigma_complete.ma @@ -17,27 +17,24 @@ include "supremum.ma". include "nat/le_arith.ma". include "russell_support.ma". -inductive cmp_cases (n,m:nat) : CProp ≝ - | cmp_lt : n < m → cmp_cases n m - | cmp_eq : n = m → cmp_cases n m - | cmp_gt : m < n → cmp_cases n m. - -lemma cmp_nat: ∀n,m.cmp_cases n m. -intros; generalize in match (nat_compare_to_Prop n m); -cases (nat_compare n m); intros; -[constructor 1|constructor 2|constructor 3] assumption; -qed. - +lemma hint1: + ∀l,u.sequence (Type_of_ordered_set (segment_ordered_set nat_ordered_set l u)) + → sequence (hos_carr (os_l (segment_ordered_set nat_ordered_set l u))). +intros; assumption; +qed. + +coercion hint1 nocomposites. + alias symbol "pi1" = "exT \fst". -alias symbol "leq" = "natural 'less or equal to'". +alias symbol "N" = "ordered set N". lemma nat_dedekind_sigma_complete: ∀l,u:ℕ.∀a:sequence {[l,u]}.a is_increasing → ∀x.x is_supremum a → ∃i.∀j.i ≤ j → \fst x = \fst (a j). -intros 5; cases x (s Hs); clear x; letin X ≝ (〈s,Hs〉); +intros 5; cases x (s Hs); clear x; letin X ≝ ≪s,Hs≫; fold normalize X; intros; cases H1; -alias symbol "plus" = "natural plus". -alias symbol "nat" = "Uniform space N". -letin spec ≝ (λi,j:ℕ.(u≤i ∧ s = \fst (a j)) ∨ (i < u ∧ s+i ≤ u + \fst (a j))); (* s - aj <= max 0 (u - i) *) +alias symbol "N" = "Natural numbers". +letin spec ≝ (λi,j:ℕ.(u≤i ∧ s = \fst (a j)) ∨ (i < u ∧ s+i ≤ u + \fst (a j))); +(* s - aj <= max 0 (u - i) *) letin m ≝ (hide ? ( let rec aux i ≝ match i with @@ -45,15 +42,13 @@ letin m ≝ (hide ? ( | S m ⇒ let pred ≝ aux m in let apred ≝ a pred in - match cmp_nat (\fst apred) s with - [ cmp_eq _ ⇒ pred - | cmp_gt nP ⇒ match ? in False return λ_.nat with [] - | cmp_lt nP ⇒ \fst (H3 apred nP)]] + match cmp_nat s (\fst apred) with + [ cmp_le _ ⇒ pred + | cmp_gt nP ⇒ \fst (H3 apred ?)]] in aux : - ∀i:nat.∃j:nat.spec i j));unfold spec in aux ⊢ %; -[1: apply (H2 pred nP); -|4: unfold X in H2; clear H4 n aux spec H3 H1 H X; + ∀i:nat.∃j:nat.spec i j));[whd; apply nP;] unfold spec in aux ⊢ %; +[3: unfold X in H2; clear H4 n aux spec H3 H1 H X; cases u in H2 Hs a ⊢ %; intros (a Hs H); [1: left; split; [apply le_n] generalize in match H; @@ -66,38 +61,38 @@ letin m ≝ (hide ? ( |2: right; cases Hs; rewrite > (sym_plus s O); split; [apply le_S_S; apply le_O_n]; apply (trans_le ??? (os_le_to_nat_le ?? H1)); apply le_plus_n_r;] -|2,3: clear H6; +|2: clear H6; cut (s = \fst (a (aux n1))); [2: + cases (le_to_or_lt_eq ?? H5); [2: assumption] + cases (?:False); apply (H2 (aux n1) H6);] clear H5; + generalize in match Hcut; clear Hcut; intro H5; +|1: clear H6] +[2,1: cases (aux n1) in H5 ⊢ %; intros; - change in match (a 〈w,H5〉) in H6 ⊢ % with (a w); + change in match (a ≪w,H5≫) in H6 ⊢ % with (a w); cases H5; clear H5; cases H7; clear H7; [1: left; split; [ apply (le_S ?? H5); | assumption] |3: cases (?:False); rewrite < H8 in H6; apply (not_le_Sn_n ? H6); - |*: cut (u ≤ S n1 ∨ S n1 < u); - [2,4: cases (cmp_nat u (S n1)); - [1,4: left; apply lt_to_le; assumption - |2,5: rewrite > H7; left; apply le_n - |3,6: right; assumption ] - |*: cases Hcut; clear Hcut - [1,3: left; split; [1,3: assumption |2: symmetry; assumption] - cut (u = S n1); [2: apply le_to_le_to_eq; assumption ] - clear H7 H5 H4;rewrite > Hcut in H8:(? ? (? % ?)); clear Hcut; - cut (s = S (\fst (a w))); - [2: apply le_to_le_to_eq; [2: assumption] - change in H8 with (s + n1 ≤ S (n1 + \fst (a w))); - rewrite > plus_n_Sm in H8; rewrite > sym_plus in H8; - apply (le_plus_to_le ??? H8);] - cases (H3 (a w) H6); - change with (s = \fst (a w1)); - change in H4 with (\fst (a w) < \fst (a w1)); - apply le_to_le_to_eq; [ rewrite > Hcut; assumption ] - apply (os_le_to_nat_le (\fst (a w1)) s (H2 w1)); - |*: right; split; try assumption; - [1: rewrite > sym_plus in ⊢ (? ? %); - rewrite < H6; apply le_plus_r; assumption; - |2: cases (H3 (a w) H6); - change with (s + S n1 ≤ u + \fst (a w1));rewrite < plus_n_Sm; - apply (trans_le ??? (le_S_S ?? H8)); rewrite > plus_n_Sm; - apply (le_plus ???? (le_n ?) H9);]]]]] + |*: cases (cmp_nat u (S n1)); + [1,3: left; split; [1,3: assumption |2: assumption] + cut (u = S n1); [2: apply le_to_le_to_eq; assumption ] + clear H7 H5 H4;rewrite > Hcut in H8:(? ? (? % ?)); clear Hcut; + cut (s = S (\fst (a w))); + [2: apply le_to_le_to_eq; [2: assumption] + change in H8 with (s + n1 ≤ S (n1 + \fst (a w))); + rewrite > plus_n_Sm in H8; rewrite > sym_plus in H8; + apply (le_plus_to_le ??? H8);] + cases (H3 (a w) H6); + change with (s = \fst (a w1)); + change in H4 with (\fst (a w) < \fst (a w1)); + apply le_to_le_to_eq; [ rewrite > Hcut; assumption ] + apply (os_le_to_nat_le (\fst (a w1)) s (H2 w1)); + |*: right; split; try assumption; + [1: rewrite > sym_plus in ⊢ (? ? %); + rewrite < H6; apply le_plus_r; assumption; + |2: cases (H3 (a w) H6); + change with (s + S n1 ≤ u + \fst (a w1));rewrite < plus_n_Sm; + apply (trans_le ??? (le_S_S ?? H8)); rewrite > plus_n_Sm; + apply (le_plus ???? (le_n ?) H9);]]]] clearbody m; unfold spec in m; clear spec; letin find ≝ ( let rec find i u on u : nat ≝ @@ -120,14 +115,21 @@ exists [apply w]; intros; change with (s = \fst (a j)); rewrite > (H4 ?); [2: reflexivity] apply le_to_le_to_eq; [1: apply os_le_to_nat_le; - apply (trans_increasing ?? H ? ? (nat_le_to_os_le ?? H5)); + apply (trans_increasing ? H ? ? (nat_le_to_os_le ?? H5)); |2: apply (trans_le ? s ?);[apply os_le_to_nat_le; apply (H2 j);] rewrite < (H4 ?); [2: reflexivity] apply le_n;] qed. -alias symbol "pi1" = "exT \fst". -alias symbol "leq" = "natural 'less or equal to'". -alias symbol "nat" = "ordered set N". +lemma hint2: + ∀l,u.sequence (Type_of_ordered_set (segment_ordered_set nat_ordered_set l u)) + → sequence (hos_carr (os_r (segment_ordered_set nat_ordered_set l u))). +intros; assumption; +qed. + +coercion hint2 nocomposites. + +alias symbol "N" = "ordered set N". axiom nat_dedekind_sigma_complete_r: ∀l,u:ℕ.∀a:sequence {[l,u]}.a is_decreasing → ∀x.x is_infimum a → ∃i.∀j.i ≤ j → \fst x = \fst (a j). +