X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fmodels%2Fq_bars.ma;h=de39589073d51967d81528130c9afa59c4e858c4;hb=b5564e329d48efa6c2ca01da18203def26a70294;hp=d0d043f47e053ae50df4e8aaba1ac9f510a83d72;hpb=88b32d4e8fe371d59e41cd272064c9d486ae7ec5;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/models/q_bars.ma b/helm/software/matita/contribs/dama/dama/models/q_bars.ma index d0d043f47..de3958907 100644 --- a/helm/software/matita/contribs/dama/dama/models/q_bars.ma +++ b/helm/software/matita/contribs/dama/dama/models/q_bars.ma @@ -12,175 +12,141 @@ (* *) (**************************************************************************) +include "nat_ordered_set.ma". include "models/q_support.ma". -include "models/list_support.ma". -include "cprop_connectives.ma". +include "models/list_support.ma". +include "logic/cprop_connectives.ma". -definition bar ≝ ratio × ℚ. (* base (Qpos) , height *) -record q_f : Type ≝ { start : ℚ; bars: list bar }. +definition bar ≝ ℚ × (ℚ × ℚ). notation < "\rationals \sup 2" non associative with precedence 90 for @{'q2}. interpretation "Q x Q" 'q2 = (Prod Q Q). -definition empty_bar : bar ≝ 〈one,OQ〉. +definition empty_bar : bar ≝ 〈Qpos one,〈OQ,OQ〉〉. notation "\rect" with precedence 90 for @{'empty_bar}. interpretation "q0" 'empty_bar = empty_bar. notation < "\ldots\rect\square\EmptySmallSquare\ldots" with precedence 90 for @{'lq2}. -interpretation "lq2" 'lq2 = (list bar). - -let rec sum_bases (l:list bar) (i:nat) on i ≝ - match i with - [ O ⇒ OQ - | S m ⇒ - match l with - [ nil ⇒ sum_bases l m + Qpos one - | cons x tl ⇒ sum_bases tl m + Qpos (\fst x)]]. - -axiom sum_bases_empty_nat_of_q_ge_OQ: - ∀q:ℚ.OQ ≤ sum_bases [] (nat_of_q q). -axiom sum_bases_empty_nat_of_q_le_q: - ∀q:ℚ.sum_bases [] (nat_of_q q) ≤ q. -axiom sum_bases_empty_nat_of_q_le_q_one: - ∀q:ℚ.q < sum_bases [] (nat_of_q q) + Qpos one. - -definition eject1 ≝ - λP.λp:∃x:nat × ℚ.P x.match p with [ex_introT p _ ⇒ p]. -coercion eject1. -definition inject1 ≝ λP.λp:nat × ℚ.λh:P p. ex_introT ? P p h. -coercion inject1 with 0 1 nocomposites. - -definition value : - ∀f:q_f.∀i:ℚ.∃p:nat × ℚ. - match q_cmp i (start f) with - [ q_lt _ ⇒ \snd p = OQ - | _ ⇒ - And3 - (sum_bases (bars f) (\fst p) ≤ ⅆ[i,start f]) - (ⅆ[i, start f] < sum_bases (bars f) (S (\fst p))) - (\snd p = \snd (nth (bars f) ▭ (\fst p)))]. -intros; -alias symbol "pi2" = "pair pi2". -alias symbol "pi1" = "pair pi1". -letin value ≝ ( - let rec value (p: ℚ) (l : list bar) on l ≝ - match l with - [ nil ⇒ 〈nat_of_q p,OQ〉 - | cons x tl ⇒ - match q_cmp p (Qpos (\fst x)) with - [ q_lt _ ⇒ 〈O, \snd x〉 - | _ ⇒ - let rc ≝ value (p - Qpos (\fst x)) tl in - 〈S (\fst rc),\snd rc〉]] - in value : - ∀acc,l.∃p:nat × ℚ. OQ ≤ acc → - And3 - (sum_bases l (\fst p) ≤ acc) - (acc < sum_bases l (S (\fst p))) - (\snd p = \snd (nth l ▭ (\fst p)))); -[5: clearbody value; - cases (q_cmp i (start f)); - [2: exists [apply 〈O,OQ〉] simplify; reflexivity; - |*: cases (value ⅆ[i,start f] (bars f)) (p Hp); - cases (Hp (q_dist_ge_OQ ? ?)); clear Hp value; - exists[1,3:apply p]; simplify; split; assumption;] -|1,3: intros; split; - [1,4: clear H2; cases (value (q-Qpos (\fst b)) l1); - cases (H2 (q_le_to_diff_ge_OQ ?? (? H1))); - [1,3: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption] - simplify; apply q_le_minus; assumption; - |2,5: cases (value (q-Qpos (\fst b)) l1); - cases (H4 (q_le_to_diff_ge_OQ ?? (? H1))); - [1,3: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption] - clear H3 H2 value; - change with (q < sum_bases l1 (S (\fst w)) + Qpos (\fst b)); - apply q_lt_plus; assumption; - |*: cases (value (q-Qpos (\fst b)) l1); simplify; - cases (H4 (q_le_to_diff_ge_OQ ?? (? H1))); - [1,3: intros; [apply q_lt_to_le|apply q_eq_to_le;symmetry] assumption] - assumption;] -|2: clear value H2; simplify; intros; split; [assumption|3:reflexivity] - rewrite > q_plus_sym; rewrite > q_plus_OQ; assumption; -|4: simplify; intros; split; - [1: apply sum_bases_empty_nat_of_q_le_q; - |2: apply sum_bases_empty_nat_of_q_le_q_one; - |3: elim (nat_of_q q); [reflexivity] simplify; assumption]] +interpretation "lq2" 'lq2 = (list bar). + +definition q2_lt := mk_rel bar (λx,y:bar.\fst x < \fst y). + +interpretation "bar lt" 'lt x y = (rel_op _ q2_lt x y). + +lemma q2_trans : ∀a,b,c:bar. a < b → b < c → a < c. +intros 3; cases a; cases b; cases c; unfold q2_lt; simplify; intros; +apply (q_lt_trans ??? H H1); +qed. + +definition q2_trel := mk_trans_rel bar q2_lt q2_trans. + +interpretation "bar lt" 'lt x y = (FunClass_2_OF_trans_rel q2_trel x y). + +definition canonical_q_lt : rel bar → trans_rel ≝ λx:rel bar.q2_trel. + +coercion canonical_q_lt with nocomposites. + +interpretation "bar lt" 'lt x y = (FunClass_2_OF_trans_rel (canonical_q_lt _) x y). + +definition nth_base ≝ λf,n. \fst (\nth f ▭ n). +definition nth_height ≝ λf,n. \snd (\nth f ▭ n). + +record q_f : Type ≝ { + bars: list bar; + bars_sorted : sorted q2_lt bars; + bars_begin_OQ : nth_base bars O = OQ; + bars_end_OQ : nth_height bars (pred (\len bars)) = 〈OQ,OQ〉 +}. + +lemma len_bases_gt_O: ∀f.O < \len (bars f). +intros; generalize in match (bars_begin_OQ f); cases (bars f); intros; +[2: simplify; apply le_S_S; apply le_O_n; +|1: normalize in H; destruct H;] +qed. + +lemma all_bases_positive : ∀f:q_f.∀i. OQ < nth_base (bars f) (S i). +intro f; generalize in match (bars_begin_OQ f); generalize in match (bars_sorted f); +cases (len_gt_non_empty ?? (len_bases_gt_O f)); intros; +cases (cmp_nat (\len l) i); +[2: lapply (sorted_tail_bigger q2_lt ?? ▭ H ? H2) as K; + simplify in H1; rewrite < H1; apply K; +|1: simplify; elim l in i H2;[simplify; rewrite > nth_nil; apply (q_pos_OQ one)] + cases n in H3; intros; [simplify in H3; cases (not_le_Sn_O ? H3)] + apply (H2 n1); simplify in H3; apply (le_S_S_to_le ?? H3);] qed. - - -definition same_values ≝ - λl1,l2:q_f. - ∀input.\snd (\fst (value l1 input)) = \snd (\fst (value l2 input)). -definition same_bases ≝ - λl1,l2:q_f. - (∀i.\fst (nth (bars l1) ▭ i) = \fst (nth (bars l2) ▭ i)). +coinductive value_spec (f : q_f) (i : ℚ) : ℚ × ℚ → CProp ≝ +| value_of : ∀j,q. + nth_height (bars f) j = q → nth_base (bars f) j < i → + (∀n.j < n → n < \len (bars f) → i ≤ nth_base (bars f) n) → value_spec f i q. + +definition value_lemma : ∀f:q_f.∀i:ratio.∃p:ℚ×ℚ.value_spec f (Qpos i) p. +intros; +letin P ≝ + (λx:bar.match q_cmp (Qpos i) (\fst x) with[ q_leq _ ⇒ true| q_gt _ ⇒ false]); +exists [apply (nth_height (bars f) (pred (find ? P (bars f) ▭)));] +apply (value_of ?? (pred (find ? P (bars f) ▭))); +[1: reflexivity +|2: cases (cases_find bar P (bars f) ▭); + [1: cases i1 in H H1 H2 H3; simplify; intros; + [1: generalize in match (bars_begin_OQ f); + cases (len_gt_non_empty ?? (len_bases_gt_O f)); simplify; intros; + rewrite > H4; apply q_pos_OQ; + |2: cases (len_gt_non_empty ?? (len_bases_gt_O f)) in H3; + intros; lapply (H3 n (le_n ?)) as K; unfold P in K; + cases (q_cmp (Qpos i) (\fst (\nth (x::l) ▭ n))) in K; + simplify; intros; [destruct H5] assumption] + |2: destruct H; cases (len_gt_non_empty ?? (len_bases_gt_O f)) in H2; + simplify; intros; lapply (H (\len l) (le_n ?)) as K; clear H; + unfold P in K; cases (q_cmp (Qpos i) (\fst (\nth (x::l) ▭ (\len l)))) in K; + simplify; intros; [destruct H2] assumption;] +|3: intro; cases (cases_find bar P (bars f) ▭); intros; + [1: generalize in match (bars_sorted f); + cases (list_break ??? H) in H1; rewrite > H6; + rewrite < H1; simplify; rewrite > nth_len; unfold P; + cases (q_cmp (Qpos i) (\fst x)); simplify; + intros (X Hs); [2: destruct X] clear X; + cases (sorted_pivot q2_lt ??? ▭ Hs); + cut (\len l1 ≤ n) as Hn; [2: + rewrite > H1; cases i1 in H4; simplify; intro X; [2: assumption] + apply lt_to_le; assumption;] + unfold nth_base; rewrite > (nth_append_ge_len ????? Hn); + cut (n - \len l1 < \len (x::l2)) as K; [2: + simplify; rewrite > H1; rewrite > (?:\len l2 = \len (bars f) - \len (l1 @ [x]));[2: + rewrite > H6; repeat rewrite > len_append; simplify; + repeat rewrite < plus_n_Sm; rewrite < plus_n_O; simplify; + rewrite > sym_plus; rewrite < minus_plus_m_m; reflexivity;] + rewrite > len_append; rewrite > H1; simplify; rewrite < plus_n_SO; + apply le_S_S; clear H1 H6 H7 Hs H8 H9 Hn x l2 l1 H4 H3 H2 H P i; + elim (\len (bars f)) in i1 n H5; [cases (not_le_Sn_O ? H);] + simplify; cases n2; [ repeat rewrite < minus_n_O; apply le_S_S_to_le; assumption] + cases n1 in H1; [intros; rewrite > eq_minus_n_m_O; apply le_O_n] + intros; simplify; apply H; apply le_S_S_to_le; assumption;] + cases (n - \len l1) in K; simplify; intros; [ assumption] + lapply (H9 ? (le_S_S_to_le ?? H10)) as W; apply (q_le_trans ??? H7); + apply q_lt_to_le; apply W; + |2: cases (not_le_Sn_n i1); rewrite > H in ⊢ (??%); + apply (trans_le ??? ? H4); cases i1 in H3; intros; apply le_S_S; + [ apply le_O_n; | assumption]]] +qed. + +lemma value : q_f → ratio → ℚ × ℚ. +intros; cases (value_lemma q r); apply w; qed. + +lemma cases_value : ∀f,i. value_spec f (Qpos i) (value f i). +intros; unfold value; cases (value_lemma f i); assumption; qed. + +definition same_values ≝ λl1,l2:q_f.∀input. value l1 input = value l2 input. + +definition same_bases ≝ λl1,l2:list bar. ∀i.\fst (\nth l1 ▭ i) = \fst (\nth l2 ▭ i). alias symbol "lt" = "Q less than". lemma unpos: ∀x:ℚ.OQ < x → ∃r:ratio.Qpos r = x. intro; cases x; intros; [2:exists [apply r] reflexivity] cases (?:False); -[ apply (q_lt_corefl ? H)|apply (q_neg_gt ? H)] -qed. - -notation < "\blacksquare" non associative with precedence 90 for @{'hide}. -definition hide ≝ λT:Type.λx:T.x. -interpretation "hide" 'hide = (hide _ _). - -lemma sum_bases_ge_OQ: - ∀l,n. OQ ≤ sum_bases l n. -intro; elim l; simplify; intros; -[1: elim n; [apply q_eq_to_le;reflexivity] simplify; - apply q_le_plus_trans; try assumption; apply q_lt_to_le; apply q_pos_lt_OQ; -|2: cases n; [apply q_eq_to_le;reflexivity] simplify; - apply q_le_plus_trans; [apply H| apply q_lt_to_le; apply q_pos_lt_OQ;]] +[ apply (q_lt_corefl ? H)| cases (q_lt_le_incompat ?? (q_neg_gt ?) (q_lt_to_le ?? H))] qed. -lemma sum_bases_O: - ∀l:q_f.∀x.sum_bases (bars l) x ≤ OQ → x = O. -intros; cases x in H; [intros; reflexivity] intro; cases (?:False); -cases (q_le_cases ?? H); -[1: apply (q_lt_corefl OQ); rewrite < H1 in ⊢ (?? %); -|2: apply (q_lt_antisym ??? H1);] clear H H1; cases (bars l); -simplify; apply q_lt_plus_trans; -try apply q_pos_lt_OQ; -try apply (sum_bases_ge_OQ []); -apply (sum_bases_ge_OQ l1); -qed. - -lemma sum_bases_increasing: - ∀l,x.sum_bases l x < sum_bases l (S x). -intro; elim l; -[1: elim x; - [1: simplify; rewrite > q_plus_sym; rewrite > q_plus_OQ; - apply q_pos_lt_OQ; - |2: simplify in H ⊢ %; - apply q_lt_plus; rewrite > q_elim_minus; - rewrite < q_plus_assoc; rewrite < q_elim_minus; - rewrite > q_plus_minus; rewrite > q_plus_OQ; - assumption;] -|2: elim x; - [1: simplify; rewrite > q_plus_sym; rewrite > q_plus_OQ; - apply q_pos_lt_OQ; - |2: simplify; change in ⊢ (? ? (? % ?)) with (sum_bases l1 (S n)) ; - apply q_lt_plus; rewrite > q_elim_minus; - rewrite < q_plus_assoc; rewrite < q_elim_minus; - rewrite > q_plus_minus; rewrite > q_plus_OQ; apply H]] -qed. - -lemma sum_bases_lt_canc: - ∀l,x,y.sum_bases l (S x) < sum_bases l (S y) → sum_bases l x < sum_bases l y. -intro; elim l; [apply (q_lt_canc_plus_r ?? (Qpos one));apply H] -generalize in match H1;apply (nat_elim2 (?:? → ? → CProp) ??? x y); -intros 2; -[3: intros 2; simplify; apply q_lt_inj_plus_r; apply H; - apply (q_lt_canc_plus_r ?? (Qpos (\fst a))); apply H3; -|2: cases (?:False); simplify in H2; - apply (q_lt_le_incompat (sum_bases l1 (S n)) OQ);[2: apply sum_bases_ge_OQ;] - apply (q_lt_canc_plus_r ?? (Qpos (\fst a))); apply H2; -|1: cases n in H2; intro; - [1: cases (?:False); apply (q_lt_corefl ? H2); - |2: simplify; apply q_lt_plus_trans; [apply sum_bases_ge_OQ] - apply q_pos_lt_OQ;]] -qed. +notation < "x \blacksquare" non associative with precedence 50 for @{'unpos $x}. +interpretation "hide unpos proof" 'unpos x = (unpos x _).