X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fmodels%2Fq_function.ma;h=a38cf6e4cda648377be8ea314956b673a2f2becd;hb=b12a46d53cf80d40b253ca5dd495397c5c0b4287;hp=48d3012ec66974d8c8993e5db02bd72e3b488229;hpb=59f65aaf6f8d23748e1294ecabffffaa903ae657;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/models/q_function.ma b/helm/software/matita/contribs/dama/dama/models/q_function.ma index 48d3012ec..a38cf6e4c 100644 --- a/helm/software/matita/contribs/dama/dama/models/q_function.ma +++ b/helm/software/matita/contribs/dama/dama/models/q_function.ma @@ -12,123 +12,316 @@ (* *) (**************************************************************************) -include "Q/q/q.ma". -include "list/list.ma". -include "cprop_connectives.ma". +include "russell_support.ma". +include "models/q_bars.ma". +definition rebase_spec ≝ + λl1,l2:q_f.λp:q_f × q_f. + And3 + (same_bases (bars (\fst p)) (bars (\snd p))) + (same_values l1 (\fst p)) + (same_values l2 (\snd p)). -notation "\rationals" non associative with precedence 99 for @{'q}. -interpretation "Q" 'q = Q. +definition same_values_simpl ≝ + λl1,l2.∀p1,p2,p3,p4,p5,p6.same_values (mk_q_f l1 p1 p2 p3) (mk_q_f l2 p4 p5 p6). -record q_f : Type ≝ { - start : ℚ; - bars: list (ℚ × ℚ) (* base, height *) -}. - -axiom qp : ℚ → ℚ → ℚ. - -interpretation "Q plus" 'plus x y = (qp x y). - -axiom qm : ℚ → ℚ → ℚ. - -interpretation "Q minus" 'minus x y = (qm x y). - -axiom qlt : ℚ → ℚ → CProp. - -interpretation "Q less than" 'lt x y = (qlt x y). - -inductive q_comparison (a,b:ℚ) : CProp ≝ - | q_eq : a = b → q_comparison a b - | q_lt : a < b → q_comparison a b - | q_gt : b < a → q_comparison a b. - -axiom q_cmp:∀a,b:ℚ.q_comparison a b. - -definition qle ≝ λa,b:ℚ.a = b ∨ a < b. - -interpretation "Q less or equal than" 'le x y = (qle x y). - -notation "'nth'" with precedence 90 for @{'nth}. -notation < "'nth' \nbsp l \nbsp d \nbsp i" with precedence 71 -for @{'nth_appl $l $d $i}. -interpretation "list nth" 'nth = (cic:/matita/list/list/nth.con _). -interpretation "list nth" 'nth_appl l d i = (cic:/matita/list/list/nth.con _ l d i). - -notation < "\rationals \sup 2" non associative with precedence 90 for @{'q2}. -interpretation "Q x Q" 'q2 = (Prod Q Q). - -let rec make_list (A:Type) (def:nat→A) (n:nat) on n ≝ - match n with - [ O ⇒ nil ? - | S m ⇒ def m :: make_list A def m]. - -notation "'mk_list'" with precedence 90 for @{'mk_list}. -interpretation "'mk_list'" 'mk_list = (make_list _). -notation < "'mk_list' \nbsp f \nbsp n" -with precedence 71 for @{'mk_list_appl $f $n}. -interpretation "'mk_list' appl" 'mk_list_appl f n = (make_list _ f n). +alias symbol "pi2" = "pair pi2". +alias symbol "pi1" = "pair pi1". +definition rebase_spec_aux ≝ + λl1,l2:list bar.λp:(list bar) × (list bar). + sorted q2_lt l1 → sorted q2_lt l2 → + (l1 ≠ [] → \snd (\nth l1 ▭ (pred (\len l1))) = 〈OQ,OQ〉) → + (l2 ≠ [] → \snd (\nth l2 ▭ (pred (\len l2))) = 〈OQ,OQ〉) → + And4 + (nth_base l1 O = nth_base (\fst p) O ∨ + nth_base l2 O = nth_base (\fst p) O) + (sorted q2_lt (\fst p) ∧ sorted q2_lt (\snd p)) + ((l1 ≠ [] → \snd (\nth (\fst p) ▭ (pred (\len (\fst p)))) = 〈OQ,OQ〉) ∧ + (l2 ≠ [] → \snd (\nth (\snd p) ▭ (pred (\len (\snd p)))) = 〈OQ,OQ〉)) + (And3 + (same_bases (\fst p) (\snd p)) + (same_values_simpl l1 (\fst p)) + (same_values_simpl l2 (\snd p))). -definition q0 : ℚ × ℚ ≝ 〈OQ,OQ〉. -notation < "0 \sub \rationals" with precedence 90 for @{'q0}. -interpretation "q0" 'q0 = q0. +definition eject ≝ + λP.λp:∃x:(list bar) × (list bar).P x.match p with [ex_introT p _ ⇒ p]. +coercion eject. +definition inject ≝ λP.λp:(list bar) × (list bar).λh:P p. ex_introT ? P p h. +coercion inject with 0 1 nocomposites. -notation < "[ \rationals \sup 2]" with precedence 90 for @{'lq2}. -interpretation "lq2" 'lq2 = (list (Prod Q Q)). -notation < "[ \rationals \sup 2] \sup 2" with precedence 90 for @{'lq22}. -interpretation "lq22" 'lq22 = (Prod (list (Prod Q Q)) (list (Prod Q Q))). +axiom devil : False. + +definition copy ≝ + λl:list bar.make_list ? (λn.〈nth_base l (\len l - S n),〈OQ,OQ〉〉) (\len l). +lemma list_elim_with_len: + ∀T:Type.∀P: nat → list T → CProp. + P O [] → (∀l,a,n.P (\len l) l → P (S n) (a::l)) → + ∀l.P (\len l) l. +intros;elim l; [assumption] simplify; apply H1; apply H2; +qed. + +lemma sorted_near: + ∀r,l. sorted r l → ∀i,d. S i < \len l → r (\nth l d i) (\nth l d (S i)). + intros 3; elim H; + [1: cases (not_le_Sn_O ? H1); + |2: simplify in H1; cases (not_le_Sn_O ? (le_S_S_to_le ?? H1)); + |3: simplify; cases i in H4; intros; [apply H1] + apply H3; apply le_S_S_to_le; apply H4] + qed. + +lemma sorted_copy: + ∀l:list bar.sorted q2_lt l → sorted q2_lt (copy l). +intros 2; unfold copy; generalize in match (le_n (\len l)); +elim (\len l) in ⊢ (?%?→? ? (? ? ? %)); +simplify; [apply (sorted_nil q2_lt);] cases n in H1 H2; +simplify; intros; [apply (sorted_one q2_lt);] +apply (sorted_cons q2_lt); +[2: apply H1; apply lt_to_le; apply H2; +|1: elim l in H2 H; simplify; [simplify in H2; cases (not_le_Sn_O ? H2)] + simplify in H3; unfold nth_base; + unfold canonical_q_lt; unfold q2_trel; unfold q2_lt; simplify; + change with (q2_lt (\nth (a::l1) ▭ (\len l1-S n1)) (\nth (a::l1) ▭ (\len l1-n1))); + cut (∃w.w = \len l1 - S n1); [2: exists[apply (\len l1 - S n1)] reflexivity] + cases Hcut; rewrite < H4; rewrite < (?:S w = \len l1 - n1); + [1: apply (sorted_near q2_lt (a::l1) H2); rewrite > H4; + simplify; apply le_S_S; elim (\len l1) in H3; simplify; + [ cases (not_le_Sn_O ? (le_S_S_to_le ?? H3)); + | lapply le_S_S_to_le to H5 as H6; + lapply le_S_S_to_le to H6 as H7; clear H5 H6; + cases H7 in H3; intros; [rewrite < minus_n_n; apply le_S_S; apply le_O_n] + simplify in H5; apply le_S_S; apply (trans_le ???? (H5 ?)); + [2: apply le_S_S; apply le_S_S; assumption; + |1: apply (lt_minus_S_n_to_le_minus_n n1 (S m) (S (minus m n1)) ?). + apply (not_le_to_lt (S (minus m n1)) (minus (S m) (S n1)) ?). + apply (not_le_Sn_n (minus (S m) (S n1))).]] + |2: rewrite > H4; lapply le_S_S_to_le to H3 as K; + clear H4 Hcut H3 H H1 H2; generalize in match K; clear K; + apply (nat_elim2 ???? n1 (\len l1)); simplify; intros; + [1: rewrite < minus_n_O; cases n2 in H; [intro; cases (not_le_Sn_O ? H)] + intros; cases n3; simplify; reflexivity; + |2: cases (not_le_Sn_O ? H); + |3: apply H; apply le_S_S_to_le; apply H1;]]] +qed. -notation "'len'" with precedence 90 for @{'len}. -interpretation "len" 'len = length. -notation < "'len' \nbsp l" with precedence 70 for @{'len_appl $l}. -interpretation "len appl" 'len_appl l = (length _ l). +lemma make_list_ext: ∀T,f1,f2,n. (∀x.x H1; [2: apply le_n] +apply eq_f; apply H; intros; apply H1; apply (trans_le ??? H2); apply le_S; apply le_n; +qed. + +lemma len_copy: ∀l. \len l = \len (copy l). +intro; elim l; [reflexivity] simplify; rewrite > H; clear H; +apply eq_f; elim (\len (copy l1)) in ⊢ (??%(??(???%))); [reflexivity] simplify; +rewrite > H in ⊢ (??%?); reflexivity; +qed. -definition eject ≝ - λP.λp:∃x:(list (ℚ × ℚ)) × (list (ℚ × ℚ)).P x.match p with [ex_introT p _ ⇒ p]. -coercion cic:/matita/dama/models/q_function/eject.con. -definition inject ≝ - λP.λp:(list (ℚ × ℚ)) × (list (ℚ × ℚ)).λh:P p. ex_introT ? P p h. -(*coercion inject with 0 1 nocomposites.*) -coercion cic:/matita/dama/models/q_function/inject.con 0 1 nocomposites. +lemma same_bases_cons: ∀a,b,l1,l2. + same_bases l1 l2 → \fst a = \fst b → same_bases (a::l1) (b::l2). +intros; intro; cases i; simplify; [assumption;] apply (H n); +qed. -definition cb0h ≝ (λl.mk_list (λi.〈\fst (nth l q0 i),OQ〉) (length ? l)). +lemma minus_lt : ∀i,j. i < j → j - i = S (j - S i). +intros 2; +apply (nat_elim2 ???? i j); simplify; intros; +[1: cases n in H; intros; rewrite < minus_n_O; [cases (not_le_Sn_O ? H);] + simplify; rewrite < minus_n_O; reflexivity; +|2: cases (not_le_Sn_O ? H); +|3: apply H; apply le_S_S_to_le; assumption;] +qed. + +lemma copy_same_bases: ∀l. same_bases l (copy l). +intro; unfold copy; elim l using list_elim_with_len; [1: intro;reflexivity] +simplify; rewrite < minus_n_n; +simplify in ⊢ (? ? (? ? (? ? ? % ?) ?)); +apply same_bases_cons; [2: reflexivity] +cases l1 in H; [intros 2; reflexivity] +simplify in ⊢ (? ? (? ? (λ_:?.? ? ? (? ? %) ?) ?)→?); +simplify in ⊢ (?→? ? (? ? (λ_:?.? ? ? (? ? (? % ?)) ?) ?)); +intro; rewrite > (make_list_ext ?? (λn:nat.〈nth_base (b::l2) (\len l2-n),〈OQ,OQ〉〉));[assumption] +intro; elim x; [simplify; rewrite < minus_n_O; reflexivity] +simplify in ⊢ (? ? (? ? ? (? ? %) ?) ?); +simplify in H2:(? ? %); rewrite > minus_lt; [reflexivity] apply le_S_S_to_le; +assumption; +qed. +lemma copy_rebases: + ∀l1.rebase_spec_aux l1 [] 〈l1, copy l1〉. +intros; elim l1; intros 4; +[1: split; [left; reflexivity]; split; try assumption; unfold; intros; + unfold same_values; intros; reflexivity; +|2: rewrite > H3; [2: intro X; destruct X] + split; [left; reflexivity] split; + unfold same_values_simpl; unfold same_values; intros; try reflexivity; + try assumption; [4: normalize in p2; destruct p2|2: cases H5; reflexivity;] + [1: apply (sorted_copy ? H1); + |2: apply (copy_same_bases (a::l));]] +qed. + +lemma copy_rebases_r: + ∀l1.rebase_spec_aux [] l1 〈copy l1, l1〉. +intros; elim l1; intros 4; +[1: split; [left; reflexivity]; split; try assumption; unfold; intros; + unfold same_values; intros; reflexivity; +|2: rewrite > H4; [2: intro X; destruct X] + split; [right; simplify; rewrite < minus_n_n; reflexivity] split; + unfold same_values_simpl; unfold same_values; intros; try reflexivity; + try assumption; [4: normalize in p2; destruct p2|2: cases H5; reflexivity;] + [1: apply (sorted_copy ? H2); + |2: intro; symmetry; apply (copy_same_bases (a::l));]] +qed. + +definition rebase: ∀l1,l2:q_f.∃p:q_f × q_f.rebase_spec l1 l2 p. +intros 2 (f1 f2); cases f1 (b1 Hs1 Hb1 He1); cases f2 (b2 Hs2 Hb2 He2); clear f1 f2; +alias symbol "plus" = "natural plus". alias symbol "pi2" = "pair pi2". alias symbol "pi1" = "pair pi1". -definition rebase: - q_f → q_f → - ∃p:q_f × q_f.∀i. - \fst (nth (bars (\fst p)) q0 i) = - \fst (nth (bars (\snd p)) q0 i). -intros (f1 f2); cases f1 (s1 l1); cases f2 (s2 l2); clear f1 f2; -letin spec ≝ (λl1,l2:list (ℚ × ℚ).λm:nat.λz:(list (ℚ × ℚ)) × (list (ℚ × ℚ)).True); +alias symbol "minus" = "Q minus". letin aux ≝ ( -let rec aux (l1,l2:list (ℚ × ℚ)) (n:nat) on n : (list (ℚ × ℚ)) × (list (ℚ × ℚ)) ≝ +let rec aux (l1,l2:list bar) (n : nat) on n : (list bar) × (list bar) ≝ match n with -[ O ⇒ 〈 nil ? , nil ? 〉 -| S m ⇒ +[ O ⇒ 〈[], []〉 +| S m ⇒ match l1 with - [ nil ⇒ 〈cb0h l2, l2〉 + [ nil ⇒ 〈copy l2, l2〉 | cons he1 tl1 ⇒ match l2 with - [ nil ⇒ 〈l1, cb0h l1〉 + [ nil ⇒ 〈l1, copy l1〉 | cons he2 tl2 ⇒ - let base1 ≝ (\fst he1) in - let base2 ≝ (\fst he2) in - let height1 ≝ (\snd he1) in - let height2 ≝ (\snd he2) in + let base1 ≝ \fst he1 in + let base2 ≝ \fst he2 in + let height1 ≝ \snd he1 in + let height2 ≝ \snd he2 in match q_cmp base1 base2 with - [ q_eq _ ⇒ - let rc ≝ aux tl1 tl2 m in - 〈he1 :: \fst rc,he2 :: \snd rc〉 - | q_lt _ ⇒ - let rest ≝ base2 - base1 in - let rc ≝ aux tl1 (〈rest,height2〉 :: tl2) m in - 〈〈base1,height1〉 :: \fst rc,〈base1,height2〉 :: \snd rc〉 - | q_gt _ ⇒ + [ q_leq Hp1 ⇒ + match q_cmp base2 base1 with + [ q_leq Hp2 ⇒ + let rc ≝ aux tl1 tl2 m in + 〈he1 :: \fst rc,he2 :: \snd rc〉 + | q_gt Hp ⇒ + let rest ≝ base2 - base1 in + let rc ≝ aux tl1 (〈rest,height2〉 :: tl2) m in + 〈〈base1,height1〉 :: \fst rc,〈base1,height2〉 :: \snd rc〉] + | q_gt Hp ⇒ let rest ≝ base1 - base2 in let rc ≝ aux (〈rest,height1〉 :: tl1) tl2 m in - 〈〈base2,height1〉 :: \fst rc,〈base2,height2〉 :: \snd rc〉 -]]]] -in aux : ∀l1,l2,m.∃z.spec l1 l2 m z); -qed. \ No newline at end of file + 〈〈base2,height1〉 :: \fst rc,〈base2,height2〉 :: \snd rc〉]]]] +in aux : ∀l1,l2,m.∃z.\len l1 + \len l2 ≤ m → rebase_spec_aux l1 l2 z); +[7: clearbody aux; cases (aux b1 b2 (\len b1 + \len b2)) (w Hw); clear aux; + cases (Hw (le_n ?) Hs1 Hs2 (λ_.He1) (λ_.He2)); clear Hw; cases H1; cases H2; cases H3; clear H3 H1 H2; + exists [constructor 1;constructor 1;[apply (\fst w)|5:apply (\snd w)]] try assumption; + [1,3: apply hide; cases H (X X); try rewrite < (H8 O); try rewrite < X; assumption + |2,4: apply hide;[apply H6|apply H7]intro X;[rewrite > X in Hb1|rewrite > X in Hb2] + normalize in Hb1 Hb2; [destruct Hb1|destruct Hb2]] + unfold; unfold same_values; simplify in ⊢ (? (? % %) ? ?); + simplify in match (\snd 〈?,?〉); simplify in match (\fst 〈?,?〉); + split; [assumption; |apply H9;|apply H10] +|6: intro ABS; unfold; intros 4; clear H1 H2; + cases l in ABS H3; intros 1; [2: simplify in H1; cases (not_le_Sn_O ? H1)] + cases l1 in H4 H1; intros; [2: simplify in H2; cases (not_le_Sn_O ? H2)] + split; [ left; reflexivity|split; apply (sorted_nil q2_lt);|split; assumption;] + split; unfold; intros; unfold same_values; intros; reflexivity; +|5: intros; apply copy_rebases_r; +|4: intros; rewrite < H1; apply copy_rebases; +|3: cut (\fst b = \fst b3) as K; [2: apply q_le_to_le_to_eq; assumption] clear H6 H5 H4 H3; + intros; cases (aux l2 l3 n1); intros 4; simplify in match (\fst ≪w,H≫); + simplify in match (\fst 〈?,?〉); simplify in match (\snd 〈?,?〉); + cases H4; + [2: apply le_S_S_to_le; apply (trans_le ???? H3); simplify; + rewrite < plus_n_Sm; apply le_S; apply le_n; + |3,4: apply (sorted_tail q2_lt); [2: apply H5|4:apply H6] + |5: intro; cases l2 in H7 H9; intros; [cases H9; reflexivity] + simplify in H7 ⊢ %; apply H7; intro; destruct H10; + |6: intro; cases l3 in H8 H9; intros; [cases H9; reflexivity] + simplify in H8 ⊢ %; apply H8; intro; destruct H10;] + clear aux; split; + [1: left; reflexivity; + |2: cases H10; + + + + unfold rebase_spec_aux; intros; cases l1 in H2 H4 H6; intros; [ simplify in H2; destruct H2;] + lapply H6 as H7; [2: intro X; destruct X] clear H6 H5; + rewrite > H7; split; [right; simplify; + + split; [left;reflexivity] + split; + +,2: unfold rest; apply q_lt_minus; rewrite > q_plus_sym; rewrite > q_plus_OQ; + assumption; +|8: intros; cases (?:False); apply (not_le_Sn_O ? H1); +|3: intros; generalize in match (unpos ??); intro X; cases X; clear X; + simplify in ⊢ (???? (??? (??? (??? (?? (? (?? (??? % ?) ?) ??)))) ?)); + simplify in ⊢ (???? (???? (??? (??? (?? (? (?? (??? % ?) ?) ??)))))); + clear H4; cases (aux (〈w,\snd b〉::l4) l5 n1); clear aux; + cut (len (〈w,\snd b〉::l4) + len l5 < n1) as K;[2: + simplify in H5; simplify; rewrite > sym_plus in H5; simplify in H5; + rewrite > sym_plus in H5; apply le_S_S_to_le; apply H5;] + split; + [1: simplify in ⊢ (? % ?); simplify in ⊢ (? ? %); + cases (H4 s K); clear K H4; intro input; cases input; [reflexivity] + simplify; apply H7; + |2: simplify in ⊢ (? ? %); cases (H4 s K); clear H4 K H5 spec; + intro; + (* input < s + b1 || input >= s + b1 *) + |3: simplify in ⊢ (? ? %);] +|4: intros; generalize in match (unpos ??); intro X; cases X; clear X; + (* duale del 3 *) +|5: intros; (* triviale, caso in cui non fa nulla *) +|6,7: (* casi base in cui allunga la lista più corta *) +] +elim devil; +qed. + +include "Q/q/qtimes.ma". + +let rec area (l:list bar) on l ≝ + match l with + [ nil ⇒ OQ + | cons he tl ⇒ area tl + Qpos (\fst he) * ⅆ[OQ,\snd he]]. + +alias symbol "pi1" = "exT \fst". +alias symbol "minus" = "Q minus". +alias symbol "exists" = "CProp exists". +definition minus_spec_bar ≝ + λf,g,h:list bar. + same_bases f g → len f = len g → + ∀s,i:ℚ. \snd (\fst (value (mk_q_f s h) i)) = + \snd (\fst (value (mk_q_f s f) i)) - \snd (\fst (value (mk_q_f s g) i)). + +definition minus_spec ≝ + λf,g:q_f. + ∃h:q_f. + ∀i:ℚ. \snd (\fst (value h i)) = + \snd (\fst (value f i)) - \snd (\fst (value g i)). + +definition eject_bar : ∀P:list bar → CProp.(∃l:list bar.P l) → list bar ≝ + λP.λp.match p with [ex_introT x _ ⇒ x]. +definition inject_bar ≝ ex_introT (list bar). + +coercion inject_bar with 0 1 nocomposites. +coercion eject_bar with 0 0 nocomposites. + +lemma minus_q_f : ∀f,g. minus_spec f g. +intros; +letin aux ≝ ( + let rec aux (l1, l2 : list bar) on l1 ≝ + match l1 with + [ nil ⇒ [] + | cons he1 tl1 ⇒ + match l2 with + [ nil ⇒ [] + | cons he2 tl2 ⇒ 〈\fst he1, \snd he1 - \snd he2〉 :: aux tl1 tl2]] + in aux : ∀l1,l2 : list bar.∃h.minus_spec_bar l1 l2 h); +[2: intros 4; simplify in H3; destruct H3; +|3: intros 4; simplify in H3; cases l1 in H2; [2: intro X; simplify in X; destruct X] + intros; rewrite > (value_OQ_e (mk_q_f s []) i); [2: reflexivity] + rewrite > q_elim_minus; rewrite > q_plus_OQ; reflexivity; +|1: cases (aux l2 l3); unfold in H2; intros 4; + simplify in ⊢ (? ? (? ? ? (? ? ? (? % ?))) ?); + cases (q_cmp i (s + Qpos (\fst b))); + + + +definition excess ≝ + λf,g.∃i.\snd (\fst (value f i)) < \snd (\fst (value g i)). +