X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fordered_uniform.ma;h=63c966056db54a2f07ad19786ba1329b2722e1c6;hb=0881f6e27c5bb3434e967f4d966465c576146a6e;hp=8cca24c90b31c17bf67f90987d7cc72c57a768fe;hpb=6d27950e804ea499909ae0fabceea99f35d118e9;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/ordered_uniform.ma b/helm/software/matita/contribs/dama/dama/ordered_uniform.ma index 8cca24c90..63c966056 100644 --- a/helm/software/matita/contribs/dama/dama/ordered_uniform.ma +++ b/helm/software/matita/contribs/dama/dama/ordered_uniform.ma @@ -49,9 +49,17 @@ interpretation "relation invertion" 'invert a = (invert_os_relation _ a). interpretation "relation invertion" 'invert_symbol = (invert_os_relation _). interpretation "relation invertion" 'invert_appl a x = (invert_os_relation _ a x). +lemma hint_segment: ∀O. + segment (Type_of_ordered_set O) → + segment (hos_carr (os_l O)). +intros; assumption; +qed. + +coercion hint_segment nocomposites. + lemma segment_square_of_ordered_set_square: - ∀O:ordered_set.∀u,v:O.∀x:O squareO. - \fst x ∈ [u,v] → \snd x ∈ [u,v] → {[u,v]} squareO. + ∀O:ordered_set.∀s:‡O.∀x:O squareO. + \fst x ∈ s → \snd x ∈ s → {[s]} squareO. intros; split; exists; [1: apply (\fst x) |3: apply (\snd x)] assumption; qed. @@ -60,59 +68,70 @@ coercion segment_square_of_ordered_set_square with 0 2 nocomposites. alias symbol "pi1" (instance 4) = "exT \fst". alias symbol "pi1" (instance 2) = "exT \fst". lemma ordered_set_square_of_segment_square : - ∀O:ordered_set.∀u,v:O.{[u,v]} squareO → O squareO ≝ - λO:ordered_set.λu,v:O.λb:{[u,v]} squareO.〈\fst(\fst b),\fst(\snd b)〉. + ∀O:ordered_set.∀s:‡O.{[s]} squareO → O squareO ≝ + λO:ordered_set.λs:‡O.λb:{[s]} squareO.〈\fst(\fst b),\fst(\snd b)〉. coercion ordered_set_square_of_segment_square nocomposites. lemma restriction_agreement : - ∀O:ordered_uniform_space.∀l,r:O.∀P:{[l,r]} squareO → Prop.∀OP:O squareO → Prop.Prop. -apply(λO:ordered_uniform_space.λl,r:O. - λP:{[l,r]} squareO → Prop. λOP:O squareO → Prop. + ∀O:ordered_uniform_space.∀s:‡O.∀P:{[s]} squareO → Prop.∀OP:O squareO → Prop.Prop. +apply(λO:ordered_uniform_space.λs:‡O. + λP:{[s]} squareO → Prop. λOP:O squareO → Prop. ∀b:O squareO.∀H1,H2.(P b → OP b) ∧ (OP b → P b)); [5,7: apply H1|6,8:apply H2]skip; qed. -lemma unrestrict: ∀O:ordered_uniform_space.∀l,r:O.∀U,u.∀x:{[l,r]} squareO. - restriction_agreement ? l r U u → U x → u x. -intros 7; cases x (b b1); cases b (w1 H1); cases b1 (w2 H2); clear b b1 x; +lemma unrestrict: ∀O:ordered_uniform_space.∀s:‡O.∀U,u.∀x:{[s]} squareO. + restriction_agreement ? s U u → U x → u x. +intros 6; cases x (b b1); cases b (w1 H1); cases b1 (w2 H2); clear b b1 x; cases (H 〈w1,w2〉 H1 H2) (L _); intro Uw; apply L; apply Uw; qed. -lemma restrict: ∀O:ordered_uniform_space.∀l,r:O.∀U,u.∀x:{[l,r]} squareO. - restriction_agreement ? l r U u → u x → U x. -intros 6; cases x (b b1); cases b (w1 H1); cases b1 (w2 H2); clear b1 b x; +lemma restrict: ∀O:ordered_uniform_space.∀s:‡O.∀U,u.∀x:{[s]} squareO. + restriction_agreement ? s U u → u x → U x. +intros 5; cases x (b b1); cases b (w1 H1); cases b1 (w2 H2); clear b1 b x; intros (Ra uw); cases (Ra 〈w1,w2〉 H1 H2) (_ R); apply R; apply uw; qed. lemma invert_restriction_agreement: - ∀O:ordered_uniform_space.∀l,r:O. - ∀U:{[l,r]} squareO → Prop.∀u:O squareO → Prop. - restriction_agreement ? l r U u → - restriction_agreement ? l r (\inv U) (\inv u). -intros 9; split; intro; -[1: apply (unrestrict ????? (segment_square_of_ordered_set_square ??? 〈\snd b,\fst b〉 H2 H1) H H3); -|2: apply (restrict ????? (segment_square_of_ordered_set_square ??? 〈\snd b,\fst b〉 H2 H1) H H3);] + ∀O:ordered_uniform_space.∀s:‡O. + ∀U:{[s]} squareO → Prop.∀u:O squareO → Prop. + restriction_agreement ? s U u → + restriction_agreement ? s (\inv U) (\inv u). +intros 8; split; intro; +[1: apply (unrestrict ???? (segment_square_of_ordered_set_square ?? 〈\snd b,\fst b〉 H2 H1) H H3); +|2: apply (restrict ???? (segment_square_of_ordered_set_square ?? 〈\snd b,\fst b〉 H2 H1) H H3);] qed. lemma bs2_of_bss2: - ∀O:ordered_set.∀u,v:O.(bishop_set_of_ordered_set {[u,v]}) squareB → (bishop_set_of_ordered_set O) squareB ≝ - λO:ordered_set.λu,v:O.λb:{[u,v]} squareO.〈\fst(\fst b),\fst(\snd b)〉. + ∀O:ordered_set.∀s:‡O.(bishop_set_of_ordered_set {[s]}) squareB → (bishop_set_of_ordered_set O) squareB ≝ + λO:ordered_set.λs:‡O.λb:{[s]} squareO.〈\fst(\fst b),\fst(\snd b)〉. coercion bs2_of_bss2 nocomposites. +(* +lemma xxx : + ∀O,s,x.bs2_of_bss2 (ordered_set_OF_ordered_uniform_space O) s x + = + x. +intros; reflexivity; +*) + lemma segment_ordered_uniform_space: - ∀O:ordered_uniform_space.∀u,v:O.ordered_uniform_space. -intros (O l r); apply mk_ordered_uniform_space; -[1: apply (mk_ordered_uniform_space_ {[l,r]}); + ∀O:ordered_uniform_space.∀s:‡O.ordered_uniform_space. +intros (O s); apply mk_ordered_uniform_space; +[1: apply (mk_ordered_uniform_space_ {[s]}); [1: alias symbol "and" = "constructive and". - letin f ≝ (λP:{[l,r]} squareO → Prop. ∃OP:O squareO → Prop. - (us_unifbase O OP) ∧ restriction_agreement ??? P OP); - apply (mk_uniform_space (bishop_set_of_ordered_set {[l,r]}) f); + letin f ≝ (λP:{[s]} squareO → Prop. ∃OP:O squareO → Prop. + (us_unifbase O OP) ∧ restriction_agreement ?? P OP); + apply (mk_uniform_space (bishop_set_of_ordered_set {[s]}) f); [1: intros (U H); intro x; simplify; cases H (w Hw); cases Hw (Gw Hwp); clear H Hw; intro Hm; - lapply (us_phi1 O w Gw x Hm) as IH; - apply (restrict ? l r ??? Hwp IH); + lapply (us_phi1 O w Gw x) as IH;[2:intro;apply Hm;cases H; clear H; + [left;apply (x2sx ? s (\fst x) (\snd x) H1); + |right;apply (x2sx ? s ?? H1);] + + apply (restrict ? s ??? Hwp IH); |2: intros (U V HU HV); cases HU (u Hu); cases HV (v Hv); clear HU HV; cases Hu (Gu HuU); cases Hv (Gv HvV); clear Hu Hv; cases (us_phi2 O u v Gu Gv) (w HW); cases HW (Gw Hw); clear HW; @@ -163,35 +182,6 @@ cases (H ? H3) (m Hm); exists [apply m]; intros; apply (restrict ? l u ??? H4); apply (Hm ? H1); qed. -definition hint_sequence: - ∀C:ordered_set. - sequence (hos_carr (os_l C)) → sequence (Type_of_ordered_set C). -intros;assumption; -qed. - -definition hint_sequence1: - ∀C:ordered_set. - sequence (hos_carr (os_r C)) → sequence (Type_of_ordered_set_dual C). -intros;assumption; -qed. - -definition hint_sequence2: - ∀C:ordered_set. - sequence (Type_of_ordered_set C) → sequence (hos_carr (os_l C)). -intros;assumption; -qed. - -definition hint_sequence3: - ∀C:ordered_set. - sequence (Type_of_ordered_set_dual C) → sequence (hos_carr (os_r C)). -intros;assumption; -qed. - -coercion hint_sequence nocomposites. -coercion hint_sequence1 nocomposites. -coercion hint_sequence2 nocomposites. -coercion hint_sequence3 nocomposites. - definition order_continuity ≝ λC:ordered_uniform_space.∀a:sequence C.∀x:C. (a ↑ x → a uniform_converges x) ∧ (a ↓ x → a uniform_converges x).