X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fordered_uniform.ma;h=bf0260a510ac775fede207a1760f26e371e36daf;hb=59f65aaf6f8d23748e1294ecabffffaa903ae657;hp=974405214746fa6acf4ccf4866d65fd2056f391d;hpb=1509e99ac3aba0e725ac7ced7db20d5d23ea276a;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/ordered_uniform.ma b/helm/software/matita/contribs/dama/dama/ordered_uniform.ma index 974405214..bf0260a51 100644 --- a/helm/software/matita/contribs/dama/dama/ordered_uniform.ma +++ b/helm/software/matita/contribs/dama/dama/ordered_uniform.ma @@ -34,29 +34,143 @@ coercion cic:/matita/dama/ordered_uniform/ous_unifspace.con. record ordered_uniform_space : Type ≝ { ous_stuff :> ordered_uniform_space_; - ous_prop1: ∀U.us_unifbase ous_stuff U → convex ous_stuff U -}. + ous_convex: ∀U.us_unifbase ous_stuff U → convex ous_stuff U +}. + +definition invert_os_relation ≝ + λC:ordered_set.λU:C square → Prop. + λx:C square. U 〈\snd x,\fst x〉. + +interpretation "relation invertion" 'invert a = (invert_os_relation _ a). +interpretation "relation invertion" 'invert_symbol = (invert_os_relation _). +interpretation "relation invertion" 'invert_appl a x = (invert_os_relation _ a x). + +lemma segment_square_of_ordered_set_square: + ∀O:ordered_set.∀u,v:O.∀x:O square. + \fst x ∈ [u,v] → \snd x ∈ [u,v] → {[u,v]} square. +intros; split; exists; [1: apply (\fst x) |3: apply (\snd x)] assumption; +qed. +coercion cic:/matita/dama/ordered_uniform/segment_square_of_ordered_set_square.con 0 2. + +alias symbol "pi1" (instance 4) = "exT \fst". +alias symbol "pi1" (instance 2) = "exT \fst". +lemma ordered_set_square_of_segment_square : + ∀O:ordered_set.∀u,v:O.{[u,v]} square → O square ≝ + λO:ordered_set.λu,v:O.λb:{[u,v]} square.〈\fst(\fst b),\fst(\snd b)〉. + +coercion cic:/matita/dama/ordered_uniform/ordered_set_square_of_segment_square.con. + +lemma restriction_agreement : + ∀O:ordered_uniform_space.∀l,r:O.∀P:{[l,r]} square → Prop.∀OP:O square → Prop.Prop. +apply(λO:ordered_uniform_space.λl,r:O. + λP:{[l,r]} square → Prop.λOP:O square → Prop. + ∀b:O square.∀H1,H2.(P b → OP b) ∧ (OP b → P b)); +[5,7: apply H1|6,8:apply H2]skip; +qed. + +lemma unrestrict: ∀O:ordered_uniform_space.∀l,r:O.∀U,u.∀x:{[l,r]} square. + restriction_agreement ? l r U u → U x → u x. +intros 7; cases x (b b1); cases b (w1 H1); cases b1 (w2 H2); clear b b1 x; +cases (H 〈w1,w2〉 H1 H2) (L _); intro Uw; apply L; apply Uw; +qed. + +lemma restrict: ∀O:ordered_uniform_space.∀l,r:O.∀U,u.∀x:{[l,r]} square. + restriction_agreement ? l r U u → u x → U x. +intros 6; cases x (b b1); cases b (w1 H1); cases b1 (w2 H2); clear b1 b x; +intros (Ra uw); cases (Ra 〈w1,w2〉 H1 H2) (_ R); apply R; apply uw; +qed. + +lemma invert_restriction_agreement: + ∀O:ordered_uniform_space.∀l,r:O. + ∀U:{[l,r]} square → Prop.∀u:O square → Prop. + restriction_agreement ? l r U u → + restriction_agreement ? l r (inv U) (inv u). +intros 9; split; intro; +[1: apply (unrestrict ????? (segment_square_of_ordered_set_square ??? 〈\snd b,\fst b〉 H2 H1) H H3); +|2: apply (restrict ????? (segment_square_of_ordered_set_square ??? 〈\snd b,\fst b〉 H2 H1) H H3);] +qed. + +alias symbol "square" (instance 8) = "bishop set square". +lemma bs_of_ss: + ∀O:ordered_set.∀u,v:O.{[u,v]} square → (bishop_set_of_ordered_set O) square ≝ + λO:ordered_set.λu,v:O.λb:{[u,v]} square.〈\fst(\fst b),\fst(\snd b)〉. + +notation < "x \sub \neq" with precedence 91 for @{'bsss $x}. +interpretation "bs_of_ss" 'bsss x = (bs_of_ss _ _ _ x). + +alias symbol "square" (instance 7) = "ordered set square". +lemma ss_of_bs: + ∀O:ordered_set.∀u,v:O. + ∀b:O square.\fst b ∈ [u,v] → \snd b ∈ [u,v] → {[u,v]} square ≝ + λO:ordered_set.λu,v:O. + λb:(O:bishop_set) square.λH1,H2.〈≪\fst b,H1≫,≪\snd b,H2≫〉. + +notation < "x \sub \nleq" with precedence 91 for @{'ssbs $x}. +interpretation "ss_of_bs" 'ssbs x = (ss_of_bs _ _ _ x _ _). lemma segment_ordered_uniform_space: ∀O:ordered_uniform_space.∀u,v:O.ordered_uniform_space. -intros (O u v); apply mk_ordered_uniform_space; -[1: apply mk_ordered_uniform_space_; - [1: apply (mk_ordered_set (sigma ? (λx.x ∈ [u,v]))); - [1: intros (x y); apply (fst x ≰ fst y); - |2: intros 1; cases x; simplify; apply os_coreflexive; - |3: intros 3; cases x; cases y; cases z; simplify; apply os_cotransitive] - |2: apply (mk_uniform_space (bishop_set_of_ordered_set (mk_ordered_set (sigma ? (λx.x ∈ [u,v])) ???))); - |3: apply refl_eq; +intros (O l r); apply mk_ordered_uniform_space; +[1: apply (mk_ordered_uniform_space_ {[l,r]}); + [1: alias symbol "and" = "constructive and". + letin f ≝ (λP:{[l,r]} square → Prop. ∃OP:O square → Prop. + (us_unifbase O OP) ∧ restriction_agreement ??? P OP); + apply (mk_uniform_space (bishop_set_of_ordered_set {[l,r]}) f); + [1: intros (U H); intro x; simplify; + cases H (w Hw); cases Hw (Gw Hwp); clear H Hw; intro Hm; + lapply (us_phi1 ?? Gw x Hm) as IH; + apply (restrict ?????? Hwp IH); + |2: intros (U V HU HV); cases HU (u Hu); cases HV (v Hv); clear HU HV; + cases Hu (Gu HuU); cases Hv (Gv HvV); clear Hu Hv; + cases (us_phi2 ??? Gu Gv) (w HW); cases HW (Gw Hw); clear HW; + exists; [apply (λb:{[l,r]} square.w b)] split; + [1: unfold f; simplify; clearbody f; + exists; [apply w]; split; [assumption] intro b; simplify; + unfold segment_square_of_ordered_set_square; + cases b; intros; split; intros; assumption; + |2: intros 2 (x Hx); cases (Hw ? Hx); split; + [apply (restrict ?????? HuU H)|apply (restrict ?????? HvV H1);]] + |3: intros (U Hu); cases Hu (u HU); cases HU (Gu HuU); clear Hu HU; + cases (us_phi3 ?? Gu) (w HW); cases HW (Gw Hwu); clear HW; + exists; [apply (λx:{[l,r]} square.w x)] split; + [1: exists;[apply w];split;[assumption] intros; simplify; intro; + unfold segment_square_of_ordered_set_square; + cases b; intros; split; intro; assumption; + |2: intros 2 (x Hx); apply (restrict ?????? HuU); apply Hwu; + cases Hx (m Hm); exists[apply (\fst m)] apply Hm;] + |4: intros (U HU x); cases HU (u Hu); cases Hu (Gu HuU); clear HU Hu; + cases (us_phi4 ?? Gu x) (Hul Hur); + split; intros; + [1: lapply (invert_restriction_agreement ????? HuU) as Ra; + apply (restrict ????? x Ra); + apply Hul; apply (unrestrict ?????? HuU H); + |2: apply (restrict ?????? HuU); apply Hur; + apply (unrestrict ?????? (invert_restriction_agreement ????? HuU) H);]] + |2: simplify; reflexivity;] +|2: simplify; unfold convex; intros; + cases H (u HU); cases HU (Gu HuU); clear HU H; + lapply (ous_convex ?? Gu (bs_of_ss ? l r p) ? H2 (bs_of_ss ? l r y) H3) as Cu; + [1: apply (unrestrict ?????? HuU); apply H1; + |2: apply (restrict ?????? HuU Cu);]] qed. +interpretation "Ordered uniform space segment" 'segment_set a b = + (segment_ordered_uniform_space _ a b). (* Lemma 3.2 *) -lemma foo: +alias symbol "pi1" = "exT \fst". +lemma restric_uniform_convergence: ∀O:ordered_uniform_space.∀l,u:O. - ∀x:(segment_ordered_uniform_space O l u). - ∀a:sequence (segment_ordered_uniform_space O l u). - (* (λn.fst (a n)) uniform_converges (fst x) → *) + ∀x:{[l,u]}. + ∀a:sequence {[l,u]}. + ⌊n,\fst (a n)⌋ uniform_converges (\fst x) → a uniform_converges x. - - \ No newline at end of file +intros 8; cases H1; cases H2; clear H2 H1; +cases (H ? H3) (m Hm); exists [apply m]; intros; +apply (restrict ? l u ??? H4); apply (Hm ? H1); +qed. + +definition order_continuity ≝ + λC:ordered_uniform_space.∀a:sequence C.∀x:C. + (a ↑ x → a uniform_converges x) ∧ (a ↓ x → a uniform_converges x).