X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fproperty_sigma.ma;h=691d21045957d285b230c08bb82ee45984fad487;hb=9eabe046c1182960de8cfdba96c5414224e3a61e;hp=7d35e086fcd88a7abae314e599d15d60c51f8f4e;hpb=5f5fa5c779fcef187edf08703ae8f56653481bd1;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/property_sigma.ma b/helm/software/matita/contribs/dama/dama/property_sigma.ma index 7d35e086f..691d21045 100644 --- a/helm/software/matita/contribs/dama/dama/property_sigma.ma +++ b/helm/software/matita/contribs/dama/dama/property_sigma.ma @@ -30,31 +30,94 @@ definition max ≝ lemma le_max: ∀n,m.m ≤ max n m. intros; unfold max; apply leb_elim; simplify; intros; [assumption] apply le_n; -qed. +qed. + +lemma max_le_l: ∀n,m,z.max n m ≤ z → n ≤ z. +intros 3; unfold max; apply leb_elim; simplify; intros; [assumption] +apply lt_to_le; apply (lt_to_le_to_lt ???? H1); +apply not_le_to_lt; assumption; +qed. + +lemma sym_max: ∀n,m.max n m = max m n. +intros; apply (nat_elim2 ???? n m); simplify; intros; +[1: elim n1; [reflexivity] rewrite < H in ⊢ (? ? ? (? %)); + simplify; rewrite > H; reflexivity; +|2: reflexivity +|3: apply leb_elim; apply leb_elim; simplify; + [1: intros; apply le_to_le_to_eq; apply le_S_S;assumption; + |2,3: intros; reflexivity; + |4: intros; unfold max in H; + rewrite > (?:leb n1 m1 = false) in H; [2: + apply lt_to_leb_false; apply not_le_to_lt; assumption;] + rewrite > (?:leb m1 n1 = false) in H; [2: + apply lt_to_leb_false; apply not_le_to_lt; assumption;] + apply eq_f; assumption;]] +qed. + +lemma max_le_r: ∀n,m,z.max n m ≤ z → m ≤ z. +intros; rewrite > sym_max in H; apply (max_le_l ??? H); +qed. + definition hide ≝ λT:Type.λx:T.x. notation < "\blacksquare" non associative with precedence 50 for @{'hide}. -interpretation "hide" 'hide = - (cic:/matita/dama/property_sigma/hide.con _ _). +interpretation "hide" 'hide = (hide _ _). +interpretation "hide2" 'hide = (hide _ _ _). + +definition inject ≝ λP.λa:nat.λp:P a. ex_introT ? P ? p. +coercion cic:/matita/dama/property_sigma/inject.con 0 1. +definition eject ≝ λP.λc: ∃n:nat.P n. match c with [ ex_introT w _ ⇒ w]. +coercion cic:/matita/dama/property_sigma/eject.con. (* Lemma 3.6 *) lemma sigma_cauchy: - ∀O:ordered_uniform_space.property_sigma O → - ∀a:sequence O.∀l:O.a ↑ l → a is_cauchy → a uniform_converges l. + ∀C:ordered_uniform_space.property_sigma C → + ∀a:sequence C.∀l:C.a ↑ l → a is_cauchy → a uniform_converges l. intros 8; cases H1; cases H5; clear H5; cases (H ? H3); cases H5; clear H5; -letin m ≝ (? : sequence nat_ordered_set); [ - apply (hide (nat→nat)); intro i; elim i (i' Rec); - [1: apply (hide nat);cases (H2 ? (H8 0)) (k _); apply k; - |2: apply (max (hide nat ?) (S Rec)); cases (H2 ? (H8 (S i'))) (k Hk);apply k]] -cut (m is_strictly_increasing) as Hm; [2: - intro n; change with (S (m n) ≤ m (S n)); unfold m; whd in ⊢ (? ? %); apply (le_max ? (S (m n)));] -lapply (selection ?? Hm a l H1) as H10; -lapply (H9 ?? H10) as H11; -[1: exists [apply (m 0)] intros; - apply (ous_convex ?? H3 ? H11 (H6 (m 0))); - simplify; repeat split; - - - \ No newline at end of file +letin m ≝ (hide ? (let rec aux (i:nat) : nat ≝ + match i with + [ O ⇒ match H2 (w i) ? with [ ex_introT k _ ⇒ k ] + | S i' ⇒ max (match H2 (w i) ? with [ ex_introT k _ ⇒ k ]) (S (aux i')) + ] in aux + : + ∀z:nat.∃k:nat.∀i,j,l.k ≤ i → k ≤ j → l ≤ z → w l 〈a i, a j〉)); + [1,2:apply H8; + |3: intros 3; cases (H2 (w n) (H8 n)); simplify in ⊢ (? (? % ?) ?→?); + simplify in ⊢ (?→? (? % ?) ?→?); + intros; lapply (H10 i j) as H14; + [2: apply (max_le_l ??? H11);|3:apply (max_le_l ??? H12);] + cases (le_to_or_lt_eq ?? H13); [2: destruct H15; destruct H5; assumption] + generalize in match H11; generalize in match H12; + cases (aux n1); simplify in ⊢ (? (? ? %) ?→? (? ? %) ?→?); intros; + apply H16; [3: apply le_S_S_to_le; assumption] + apply lt_to_le; apply (max_le_r w1); assumption; + |4: intros; clear H11; rewrite > H5 in H10; + rewrite < (le_n_O_to_eq ? H14); apply H10; assumption;] +cut (((m : nat→nat) : sequence nat_ordered_set) is_strictly_increasing) as Hm; [2: + intro n; change with (S (m n) ≤ m (S n)); unfold m; + whd in ⊢ (? ? %); apply (le_max ? (S (m n)));] +cut (((m : nat→nat) : sequence nat_ordered_set) is_increasing) as Hm1; [2: + intro n; intro L; change in L with (m (S n) < m n); + lapply (Hm n) as L1; change in L1 with (m n < m (S n)); + lapply (trans_lt ??? L L1) as L3; apply (not_le_Sn_n ? L3);] +clearbody m; +lapply (selection ?? Hm a l H1) as H10; +lapply (H9 ?? H10) as H11; [ + exists [apply (m 0:nat)] intros; + apply (ous_convex ?? H3 ? H11 (H6 (m 0))); + simplify; repeat split; [intro X; cases (os_coreflexive ?? X)|2,3:apply H6;] + change with (a (m O) ≤ a i); + apply (trans_increasing ?? H4); intro; whd in H12; + apply (not_le_Sn_n i); apply (transitive_le ??? H12 H5)] +clear H10; intros (p q r); change with (w p 〈a (m q),a (m r)〉); +generalize in match (refl_eq nat (m p)); +generalize in match (m p) in ⊢ (? ? ? % → %); intro X; cases X (w1 H15); clear X; +intros (H16); simplify in H16:(? ? ? %); destruct H16; +apply H15; [3: apply le_n] +[1: lapply (trans_increasing ?? Hm1 p q) as T; [apply not_lt_to_le; apply T;] + apply (le_to_not_lt p q H5); +|2: lapply (trans_increasing ?? Hm1 p r) as T; [apply not_lt_to_le; apply T;] + apply (le_to_not_lt p r H10);] +qed.