X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fproperty_sigma.ma;h=74f03de4c9fe2ee552a207c79b15c5413fe85962;hb=62571dd402d272b1632b7739607d25df3552cc04;hp=ece02e9ba982f11bfbb8688428cb6e28a8ce9fed;hpb=7af9d84f465b5f4b609b08ae914681526d12480a;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/property_sigma.ma b/helm/software/matita/contribs/dama/dama/property_sigma.ma index ece02e9ba..74f03de4c 100644 --- a/helm/software/matita/contribs/dama/dama/property_sigma.ma +++ b/helm/software/matita/contribs/dama/dama/property_sigma.ma @@ -20,7 +20,7 @@ alias num (instance 0) = "natural number". definition property_sigma ≝ λC:ordered_uniform_space. ∀U.us_unifbase ? U → - ∃V:sequence (C square → Prop). + ∃V:sequence (C squareB → Prop). (∀i.us_unifbase ? (V i)) ∧ ∀a:sequence C.∀x:C.(a ↑ x ∨ a ↓ x) → (∀n.∀i,j.n ≤ i → n ≤ j → V n 〈a i,a j〉) → U 〈a 0,x〉. @@ -57,61 +57,65 @@ qed. lemma max_le_r: ∀n,m,z.max n m ≤ z → m ≤ z. intros; rewrite > sym_max in H; apply (max_le_l ??? H); qed. - + (* Lemma 3.6 *) lemma sigma_cauchy: ∀C:ordered_uniform_space.property_sigma C → ∀a:sequence C.∀l:C.(a ↑ l ∨ a ↓ l) → a is_cauchy → a uniform_converges l. intros 8; cases (H ? H3) (w H5); cases H5 (H8 H9); clear H5; +letin spec ≝ (λz,k:nat.∀i,j,l:nat.k ≤ i → k ≤ j → l ≤ z → w l 〈a i,a j〉); letin m ≝ (hide ? (let rec aux (i:nat) : nat ≝ match i with [ O ⇒ match H2 (w i) ? with [ ex_introT k _ ⇒ k ] | S i' ⇒ max (match H2 (w i) ? with [ ex_introT k _ ⇒ k ]) (S (aux i')) ] in aux - : - ∀z:nat.∃k:nat.∀i,j,l.k ≤ i → k ≤ j → l ≤ z → w l 〈a i, a j〉)); + : ∀z.∃k. spec z k)); unfold spec in aux ⊢ %; [1,2:apply H8; |3: intros 3; cases (H2 (w n) (H8 n)); simplify in ⊢ (? (? % ?) ?→?); simplify in ⊢ (?→? (? % ?) ?→?); intros; lapply (H5 i j) as H14; [2: apply (max_le_l ??? H6);|3:apply (max_le_l ??? H7);] cases (le_to_or_lt_eq ?? H10); [2: destruct H11; destruct H4; assumption] - generalize in match H6; generalize in match H7; - cases (aux n1); simplify in ⊢ (? (? ? %) ?→? (? ? %) ?→?); intros; - apply H12; [3: apply le_S_S_to_le; assumption] + cases (aux n1) in H6 H7 ⊢ %; simplify in ⊢ (? (? ? %) ?→? (? ? %) ?→?); intros; + apply H6; [3: apply le_S_S_to_le; assumption] apply lt_to_le; apply (max_le_r w1); assumption; |4: intros; clear H6; rewrite > H4 in H5; rewrite < (le_n_O_to_eq ? H11); apply H5; assumption;] -cut (((m : nat→nat) : sequence nat_ordered_set) is_strictly_increasing) as Hm; [2: +cut ((⌊x,(m x:nat)⌋ : sequence nat_ordered_set) is_strictly_increasing) as Hm; [2: intro n; change with (S (m n) ≤ m (S n)); unfold m; whd in ⊢ (? ? %); apply (le_max ? (S (m n)));] -cut (((m : nat→nat) : sequence nat_ordered_set) is_increasing) as Hm1; [2: +cut ((⌊x,(m x:nat)⌋ : sequence nat_ordered_set) is_increasing) as Hm1; [2: intro n; intro L; change in L with (m (S n) < m n); lapply (Hm n) as L1; change in L1 with (m n < m (S n)); lapply (trans_lt ??? L L1) as L3; apply (not_le_Sn_n ? L3);] -clearbody m; -cut ((λx:nat.a (m x))↑ l ∨ (λx:nat.a (m x)) ↓ l) as H10; [2: +clearbody m; unfold spec in m Hm Hm1; clear spec; +cut (⌊x,a (m x)⌋ ↑ l ∨ ⌊x,a (m x)⌋ ↓ l) as H10; [2: cases H1; - [ left; apply (selection_uparrow ?? Hm a l H4); - | right; apply (selection_downarrow ?? Hm a l H4);]] + [ left; apply (selection_uparrow ? Hm a l H4); + | right; apply (selection_downarrow ? Hm a l H4);]] lapply (H9 ?? H10) as H11; [ exists [apply (m 0:nat)] intros; - cases H1; - [cases H5; cases H7; apply (ous_convex ?? H3 ? H11 (H12 (m O))); - |cases H5; cases H7; cases (us_phi4 ?? H3 〈(a (m O)),l〉); - lapply (H14 H11) as H11'; apply (ous_convex ?? H3 〈l,(a (m O))〉 H11' (H12 (m O)));] - simplify; repeat split; [1,6:intro X; cases (os_coreflexive ?? X)|*: try apply H12;] - [1:change with (a (m O) ≤ a i); - apply (trans_increasing ?? H6); intro; apply (le_to_not_lt ?? H4 H14); - |2:change with (a i ≤ a (m O)); - apply (trans_decreasing ?? H6); intro; apply (le_to_not_lt ?? H4 H16);]] + cases H1; cases H5; cases H7; cases (us_phi4 ?? H3 〈l,a i〉); + apply H15; change with (U 〈a i,l〉); + [apply (ous_convex_l C ? H3 ? H11 (H12 (m O))); + |apply (ous_convex_r C ? H3 ? H11 (H12 (m O)));] + [1:apply (H12 i); + |3: apply (le_reflexive l); + |4: apply (H12 i); + |2:change with (a (m O) ≤ a i); + apply (trans_increasing a H6 (\fst (m 0)) i); intro; apply (le_to_not_lt ?? H4 H16); + |5:apply (H12 i); + |7:apply (ge_reflexive (l : hos_carr (os_r C))); + |8:apply (H12 i); + |6:change with (a i ≤ a (m O)); + apply (trans_decreasing ? H6 (\fst (m 0)) i); intro; apply (le_to_not_lt ?? H4 H16);]] clear H10; intros (p q r); change with (w p 〈a (m q),a (m r)〉); generalize in match (refl_eq nat (m p)); generalize in match (m p) in ⊢ (? ? ? % → %); intro X; cases X (w1 H15); clear X; intros (H16); simplify in H16:(? ? ? %); destruct H16; apply H15; [3: apply le_n] -[1: lapply (trans_increasing ?? Hm1 p q) as T; [apply not_lt_to_le; apply T;] +[1: lapply (trans_increasing ? Hm1 p q) as T; [apply not_lt_to_le; apply T;] apply (le_to_not_lt p q H4); -|2: lapply (trans_increasing ?? Hm1 p r) as T; [apply not_lt_to_le; apply T;] +|2: lapply (trans_increasing ? Hm1 p r) as T; [apply not_lt_to_le; apply T;] apply (le_to_not_lt p r H5);] qed.