X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fsupremum.ma;h=0de61b292fcaca3e40f5b7bddfa7ba0b88d27398;hb=179574c117d34a39cebeaa66673cda83974e135a;hp=a3a341fea096d19bdc904aefd45a1dd7ca02b238;hpb=bf7f52019b3f65b6d635a8b49a63f0d95080f189;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/supremum.ma b/helm/software/matita/contribs/dama/dama/supremum.ma index a3a341fea..0de61b292 100644 --- a/helm/software/matita/contribs/dama/dama/supremum.ma +++ b/helm/software/matita/contribs/dama/dama/supremum.ma @@ -63,16 +63,6 @@ interpretation "Ordered set decreasing" 'decreasing s = (increasing (os_r _) s) interpretation "Ordered set strong sup" 'supremum s x = (supremum (os_l _) s x). interpretation "Ordered set strong inf" 'infimum s x = (supremum (os_r _) s x). -(* se non faccio il bs_of_hos perdo dualità qui *) -lemma uniq_supremum: - ∀O:ordered_set.∀s:sequence O.∀t1,t2:O. - t1 is_supremum s → t2 is_supremum s → t1 ≈ t2. -intros (O s t1 t2 Ht1 Ht2); cases Ht1 (U1 H1); cases Ht2 (U2 H2); -apply le_le_eq; intro X; -[1: cases (H1 ? X); apply (U2 w); assumption -|2: cases (H2 ? X); apply (U1 w); assumption] -qed. - (* Fact 2.5 *) lemma h_supremum_is_upper_bound: ∀C:half_ordered_set.∀a:sequence C.∀u:C. @@ -87,14 +77,6 @@ notation "'infimum_is_lower_bound'" non associative with precedence 90 for @{'in interpretation "supremum_is_upper_bound" 'supremum_is_upper_bound = (h_supremum_is_upper_bound (os_l _)). interpretation "infimum_is_lower_bound" 'infimum_is_lower_bound = (h_supremum_is_upper_bound (os_r _)). -(* TEST DUALITY -lemma test_infimum_is_lower_bound_duality: - ∀C:ordered_set.∀a:sequence C.∀u:C. - u is_infimum a → ∀v.v is_lower_bound a → u ≥ v. -intros; lapply (infimum_is_lower_bound a u H v H1); assumption; -qed. -*) - (* Lemma 2.6 *) definition strictly_increasing ≝ λC:half_ordered_set.λa:sequence C.∀n:nat.a (S n) ≰≰ a n. @@ -116,16 +98,8 @@ interpretation "Ordered set strict decreasing" 'strictly_decreasing s = definition uparrow ≝ λC:half_ordered_set.λs:sequence C.λu:C. increasing ? s ∧ supremum ? s u. -(* -notation < "a \uparrow \nbsp u" non associative with precedence 45 for @{'sup_inc $a $u}. -notation > "a \uparrow u" non associative with precedence 45 for @{'sup_inc $a $u}. -*) -interpretation "Ordered set uparrow" 'funion s u = (uparrow (os_l _) s u). -(* -notation < "a \downarrow \nbsp u" non associative with precedence 45 for @{'inf_dec $a $u}. -notation > "a \downarrow u" non associative with precedence 45 for @{'inf_dec $a $u}. -*) +interpretation "Ordered set uparrow" 'funion s u = (uparrow (os_l _) s u). interpretation "Ordered set downarrow" 'fintersects s u = (uparrow (os_r _) s u). lemma h_trans_increasing: @@ -133,9 +107,9 @@ lemma h_trans_increasing: ∀n,m:nat_ordered_set. n ≤ m → a n ≤≤ a m. intros 5 (C a Hs n m); elim m; [ rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); - intro X; cases (hos_coreflexive ?? X);] + intro X; cases (hos_coreflexive ? (a n) X);] cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; -[2: rewrite > H2; intro; cases (hos_coreflexive ?? H1); +[2: rewrite > H2; intro; cases (hos_coreflexive ? (a (S n1)) H1); |1: apply (hle_transitive ???? (H ?) (Hs ?)); intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] qed. @@ -146,23 +120,24 @@ notation "'trans_decreasing'" non associative with precedence 90 for @{'trans_de interpretation "trans_increasing" 'trans_increasing = (h_trans_increasing (os_l _)). interpretation "trans_decreasing" 'trans_decreasing = (h_trans_increasing (os_r _)). -(* TEST DUALITY -lemma test_trans_decreasing_duality: - ∀C:ordered_set.∀a:sequence C.a is_decreasing → - ∀n,m:nat_ordered_set. n ≤ m → a m ≤ a n. -intros; apply (trans_decreasing ? H ?? H1); qed. -*) +lemma hint_nat : + Type_of_ordered_set nat_ordered_set → + hos_carr (os_l (nat_ordered_set)). +intros; assumption; +qed. + +coercion hint_nat nocomposites. lemma h_trans_increasing_exc: ∀C:half_ordered_set.∀a:sequence C.increasing ? a → - ∀n,m:nat_ordered_set. m ≰ n → a n ≤≤ a m. + ∀n,m:nat_ordered_set. m ≰≰ n → a n ≤≤ a m. intros 5 (C a Hs n m); elim m; [cases (not_le_Sn_O n H);] intro; apply H; [1: change in n1 with (hos_carr (os_l nat_ordered_set)); change with (n "a 'order_converges' x" non associative with precedence 45 interpretation "Order convergence" 'order_converge s u = (order_converge _ s u). (* Definition 2.8 *) -definition segment ≝ λO:half_ordered_set.λa,b:O.λx:O.(x ≤≤ b) ∧ (a ≤≤ x). +record segment (O : Type) : Type ≝ { + seg_l_ : O; + seg_u_ : O +}. + +notation > "𝕦_term 90 s" non associative with precedence 90 for @{'upp $s}. +notation "𝕦 \sub term 90 s" non associative with precedence 90 for @{'upp $s}. +notation > "𝕝_term 90 s" non associative with precedence 90 for @{'low $s}. +notation "𝕝 \sub term 90 s" non associative with precedence 90 for @{'low $s}. + +definition seg_u ≝ + λO:half_ordered_set.λs:segment O. + wloss O ?? (λl,u.l) (seg_u_ ? s) (seg_l_ ? s). +definition seg_l ≝ + λO:half_ordered_set.λs:segment O. + wloss O ?? (λl,u.l) (seg_l_ ? s) (seg_u_ ? s). + +interpretation "uppper" 'upp s = (seg_u (os_l _) s). +interpretation "lower" 'low s = (seg_l (os_l _) s). +interpretation "uppper dual" 'upp s = (seg_l (os_r _) s). +interpretation "lower dual" 'low s = (seg_u (os_r _) s). + +definition in_segment ≝ + λO:half_ordered_set.λs:segment O.λx:O. + wloss O ?? (λp1,p2.p1 ∧ p2) (seg_l ? s ≤≤ x) (x ≤≤ seg_u ? s). -notation "[term 19 a,term 19 b]" non associative with precedence 90 for @{'segment $a $b}. -interpretation "Ordered set sergment" 'segment a b = (segment (os_l _) a b). +notation "‡O" non associative with precedence 90 for @{'segment $O}. +interpretation "Ordered set sergment" 'segment x = (segment x). -notation "hvbox(x \in break [term 19 a, term 19 b])" non associative with precedence 45 - for @{'segment_in $a $b $x}. -interpretation "Ordered set sergment in" 'segment_in a b x= (segment (os_l _) a b x). +interpretation "Ordered set sergment in" 'mem x s = (in_segment _ s x). definition segment_ordered_set_carr ≝ - λO:half_ordered_set.λu,v:O.∃x.segment ? u v x. + λO:half_ordered_set.λs:‡O.∃x.x ∈ s. definition segment_ordered_set_exc ≝ - λO:half_ordered_set.λu,v:O. - λx,y:segment_ordered_set_carr ? u v.\fst x ≰≰ \fst y. + λO:half_ordered_set.λs:‡O. + λx,y:segment_ordered_set_carr O s.hos_excess_ O (\fst x) (\fst y). lemma segment_ordered_set_corefl: - ∀O,u,v. coreflexive ? (segment_ordered_set_exc O u v). -intros 4; cases x; simplify; apply hos_coreflexive; qed. + ∀O,s. coreflexive ? (wloss O ?? (segment_ordered_set_exc O s)). +intros 3; cases x; cases (wloss_prop O); +generalize in match (hos_coreflexive O w); +rewrite < (H1 ?? (segment_ordered_set_exc O s)); +rewrite < (H1 ?? (hos_excess_ O)); intros; assumption; +qed. lemma segment_ordered_set_cotrans : - ∀O,u,v. cotransitive ? (segment_ordered_set_exc O u v). -intros 6 (O u v x y z); cases x; cases y ; cases z; simplify; apply hos_cotransitive; + ∀O,s. cotransitive ? (wloss O ?? (segment_ordered_set_exc O s)). +intros 5 (O s x y z); cases x; cases y ; cases z; clear x y z; +generalize in match (hos_cotransitive O w w1 w2); +cases (wloss_prop O); +do 3 rewrite < (H3 ?? (segment_ordered_set_exc O s)); +do 3 rewrite < (H3 ?? (hos_excess_ O)); intros; apply H4; assumption; qed. lemma half_segment_ordered_set: - ∀O:half_ordered_set.∀u,v:O.half_ordered_set. -intros (O u v); apply (mk_half_ordered_set ?? (segment_ordered_set_corefl O u v) (segment_ordered_set_cotrans ???)); + ∀O:half_ordered_set.∀s:segment O.half_ordered_set. +intros (O a); constructor 1; +[ apply (segment_ordered_set_carr O a); +| apply (wloss O); +| apply (wloss_prop O); +| apply (segment_ordered_set_exc O a); +| apply (segment_ordered_set_corefl O a); +| apply (segment_ordered_set_cotrans ??); +] qed. lemma segment_ordered_set: - ∀O:ordered_set.∀u,v:O.ordered_set. -intros (O u v); letin hos ≝ (half_segment_ordered_set (os_l O) u v); -constructor 1; [apply hos; | apply (dual_hos hos); | reflexivity] + ∀O:ordered_set.∀s:‡O.ordered_set. +intros (O s); +apply half2full; apply (half_segment_ordered_set (os_l O) s); +qed. + +notation "{[ term 19 s ]}" non associative with precedence 90 for @{'segset $s}. +interpretation "Ordered set segment" 'segset s = (segment_ordered_set _ s). + +(* test : + ∀O:ordered_set.∀s: segment (os_l O).∀x:O. + in_segment (os_l O) s x + = + in_segment (os_r O) s x. +intros; try reflexivity; +*) + +lemma prove_in_segment: + ∀O:half_ordered_set.∀s:segment O.∀x:O. + (seg_l O s) ≤≤ x → x ≤≤ (seg_u O s) → x ∈ s. +intros; unfold; cases (wloss_prop O); rewrite < H2; +split; assumption; qed. -notation "hvbox({[a, break b]})" non associative with precedence 90 - for @{'segment_set $a $b}. -interpretation "Ordered set segment" 'segment_set a b = - (half_segment_ordered_set _ a b). -interpretation "Ordered set segment" 'segment_set a b = - (segment_ordered_set _ a b). +lemma cases_in_segment: + ∀C:half_ordered_set.∀s:segment C.∀x. x ∈ s → (seg_l C s) ≤≤ x ∧ x ≤≤ (seg_u C s). +intros; unfold in H; cases (wloss_prop C) (W W); rewrite