X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fsupremum.ma;h=1e6c95b8dd4d5a3d0882dae2944fac70a29fac77;hb=5070f476ff80ee53fe444d284f9e7587a37022f4;hp=715fb5bdbcd5f50f87afaef34b4d27ce48a4222c;hpb=730b049302205da43d5fbe8c4450460d85e1ece5;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/supremum.ma b/helm/software/matita/contribs/dama/dama/supremum.ma index 715fb5bdb..1e6c95b8d 100644 --- a/helm/software/matita/contribs/dama/dama/supremum.ma +++ b/helm/software/matita/contribs/dama/dama/supremum.ma @@ -17,43 +17,352 @@ include "ordered_set.ma". (* Definition 2.4 *) definition upper_bound ≝ λO:ordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤ u. +definition lower_bound ≝ λO:ordered_set.λa:sequence O.λu:O.∀n:nat.u ≤ a n. -definition strong_sup ≝ +definition supremum ≝ λO:ordered_set.λs:sequence O.λx.upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). +definition infimum ≝ + λO:ordered_set.λs:sequence O.λx.lower_bound ? s x ∧ (∀y:O.y ≰ x → ∃n.y ≰ s n). definition increasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a n ≤ a (S n). +definition decreasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a (S n) ≤ a n. notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 50 for @{'upper_bound $s $x}. -notation < "s \nbsp 'is_increasing'" non associative with precedence 50 +notation < "x \nbsp 'is_lower_bound' \nbsp s" non associative with precedence 50 + for @{'lower_bound $s $x}. +notation < "s \nbsp 'is_increasing'" non associative with precedence 50 for @{'increasing $s}. -notation < "x \nbsp 'is_strong_sup' \nbsp s" non associative with precedence 50 - for @{'strong_sup $s $x}. +notation < "s \nbsp 'is_decreasing'" non associative with precedence 50 + for @{'decreasing $s}. +notation < "x \nbsp 'is_supremum' \nbsp s" non associative with precedence 50 + for @{'supremum $s $x}. +notation < "x \nbsp 'is_infimum' \nbsp s" non associative with precedence 50 + for @{'infimum $s $x}. notation > "x 'is_upper_bound' s" non associative with precedence 50 for @{'upper_bound $s $x}. +notation > "x 'is_lower_bound' s" non associative with precedence 50 + for @{'lower_bound $s $x}. notation > "s 'is_increasing'" non associative with precedence 50 for @{'increasing $s}. -notation > "x 'is_strong_sup' s" non associative with precedence 50 - for @{'strong_sup $s $x}. +notation > "s 'is_decreasing'" non associative with precedence 50 + for @{'decreasing $s}. +notation > "x 'is_supremum' s" non associative with precedence 50 + for @{'supremum $s $x}. +notation > "x 'is_infimum' s" non associative with precedence 50 + for @{'infimum $s $x}. -interpretation "Ordered set upper bound" 'upper_bound s x = - (cic:/matita/dama/supremum/upper_bound.con _ s x). -interpretation "Ordered set increasing" 'increasing s = - (cic:/matita/dama/supremum/increasing.con _ s). -interpretation "Ordered set strong sup" 'strong_sup s x = - (cic:/matita/dama/supremum/strong_sup.con _ s x). - -include "bishop_set.ma". +interpretation "Ordered set upper bound" 'upper_bound s x = (upper_bound _ s x). +interpretation "Ordered set lower bound" 'lower_bound s x = (lower_bound _ s x). +interpretation "Ordered set increasing" 'increasing s = (increasing _ s). +interpretation "Ordered set decreasing" 'decreasing s = (decreasing _ s). +interpretation "Ordered set strong sup" 'supremum s x = (supremum _ s x). +interpretation "Ordered set strong inf" 'infimum s x = (infimum _ s x). + +include "bishop_set.ma". lemma uniq_supremum: ∀O:ordered_set.∀s:sequence O.∀t1,t2:O. - t1 is_strong_sup s → t2 is_strong_sup s → t1 ≈ t2. + t1 is_supremum s → t2 is_supremum s → t1 ≈ t2. intros (O s t1 t2 Ht1 Ht2); cases Ht1 (U1 H1); cases Ht2 (U2 H2); apply le_le_eq; intro X; [1: cases (H1 ? X); apply (U2 w); assumption |2: cases (H2 ? X); apply (U1 w); assumption] qed. +(* Fact 2.5 *) +lemma supremum_is_upper_bound: + ∀C:ordered_set.∀a:sequence C.∀u:C. + u is_supremum a → ∀v.v is_upper_bound a → u ≤ v. +intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; +cases (H1 ? H) (w Hw); apply Hv; assumption; +qed. + +lemma infimum_is_lower_bound: + ∀C:ordered_set.∀a:sequence C.∀u:C. + u is_infimum a → ∀v.v is_lower_bound a → v ≤ u. +intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; +cases (H1 ? H) (w Hw); apply Hv; assumption; +qed. + + +(* Lemma 2.6 *) +definition strictly_increasing ≝ + λC:ordered_set.λa:sequence C.∀n:nat.a (S n) ≰ a n. +definition strictly_decreasing ≝ + λC:ordered_set.λa:sequence C.∀n:nat.a n ≰ a (S n). + + +notation < "s \nbsp 'is_strictly_increasing'" non associative with precedence 50 + for @{'strictly_increasing $s}. +notation > "s 'is_strictly_increasing'" non associative with precedence 50 + for @{'strictly_increasing $s}. +interpretation "Ordered set strict increasing" 'strictly_increasing s = + (strictly_increasing _ s). +notation < "s \nbsp 'is_strictly_decreasing'" non associative with precedence 50 + for @{'strictly_decreasing $s}. +notation > "s 'is_strictly_decreasing'" non associative with precedence 50 + for @{'strictly_decreasing $s}. +interpretation "Ordered set strict decreasing" 'strictly_decreasing s = + (strictly_decreasing _ s). + +definition uparrow ≝ + λC:ordered_set.λs:sequence C.λu:C. + s is_increasing ∧ u is_supremum s. + +definition downarrow ≝ + λC:ordered_set.λs:sequence C.λu:C. + s is_decreasing ∧ u is_infimum s. + +notation < "a \uparrow \nbsp u" non associative with precedence 50 for @{'sup_inc $a $u}. +notation > "a \uparrow u" non associative with precedence 50 for @{'sup_inc $a $u}. +interpretation "Ordered set uparrow" 'sup_inc s u = (uparrow _ s u). + +notation < "a \downarrow \nbsp u" non associative with precedence 50 for @{'inf_dec $a $u}. +notation > "a \downarrow u" non associative with precedence 50 for @{'inf_dec $a $u}. +interpretation "Ordered set downarrow" 'inf_dec s u = (downarrow _ s u). + +include "nat/plus.ma". +include "nat_ordered_set.ma". + +alias symbol "nleq" = "Ordered set excess". +alias symbol "leq" = "Ordered set less or equal than". +lemma trans_increasing: + ∀C:ordered_set.∀a:sequence C.a is_increasing → ∀n,m:nat_ordered_set. n ≤ m → a n ≤ a m. +intros 5 (C a Hs n m); elim m; [ + rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); + intro X; cases (os_coreflexive ?? X);] +cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; +[2: rewrite > H2; intro; cases (os_coreflexive ?? H1); +|1: apply (le_transitive ???? (H ?) (Hs ?)); + intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] +qed. + +lemma trans_decreasing: + ∀C:ordered_set.∀a:sequence C.a is_decreasing → ∀n,m:nat_ordered_set. n ≤ m → a m ≤ a n. +intros 5 (C a Hs n m); elim m; [ + rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); + intro X; cases (os_coreflexive ?? X);] +cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; +[2: rewrite > H2; intro; cases (os_coreflexive ?? H1); +|1: apply (le_transitive ???? (Hs ?) (H ?)); + intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] +qed. + +lemma trans_increasing_exc: + ∀C:ordered_set.∀a:sequence C.a is_increasing → ∀n,m:nat_ordered_set. m ≰ n → a n ≤ a m. +intros 5 (C a Hs n m); elim m; [cases (not_le_Sn_O n H);] +intro; apply H; +[1: change in n1 with (os_carr nat_ordered_set); (* canonical structures *) + change with (n H3; apply H;] + |2: cases (?:False); change in Hp with (n "a 'order_converges' x" non associative with precedence 50 + for @{'order_converge $a $x}. +interpretation "Order convergence" 'order_converge s u = (order_converge _ s u). + +(* Definition 2.8 *) + +definition segment ≝ λO:ordered_set.λa,b:O.λx:O. + (cic:/matita/logic/connectives/And.ind#xpointer(1/1) (x ≤ b) (a ≤ x)). + +notation "[a,b]" non associative with precedence 50 + for @{'segment $a $b}. +interpretation "Ordered set sergment" 'segment a b = (segment _ a b). + +notation "hvbox(x \in break [a,b])" non associative with precedence 50 + for @{'segment2 $a $b $x}. +interpretation "Ordered set sergment in" 'segment2 a b x= (segment _ a b x). + +coinductive sigma (A:Type) (P:A→Prop) : Type ≝ sig_in : ∀x.P x → sigma A P. + +definition pi1 : ∀A.∀P.sigma A P → A ≝ λA,P,s.match s with [sig_in x _ ⇒ x]. + +interpretation "sigma pi1" 'pi1 x = (pi1 _ _ x). + +interpretation "Type exists" 'exists \eta.x = + (cic:/matita/dama/supremum/sigma.ind#xpointer(1/1) _ x). + +lemma segment_ordered_set: + ∀O:ordered_set.∀u,v:O.ordered_set. +intros (O u v); apply (mk_ordered_set (∃x.x ∈ [u,v])); +[1: intros (x y); apply (fst x ≰ fst y); +|2: intro x; cases x; simplify; apply os_coreflexive; +|3: intros 3 (x y z); cases x; cases y ; cases z; simplify; apply os_cotransitive] +qed. + +notation "hvbox({[a, break b]})" non associative with precedence 90 + for @{'segment_set $a $b}. +interpretation "Ordered set segment" 'segment_set a b = + (segment_ordered_set _ a b). + +(* Lemma 2.9 *) +lemma segment_preserves_supremum: + ∀O:ordered_set.∀l,u:O.∀a:sequence {[l,u]}.∀x:{[l,u]}. + (λn.fst (a n)) is_increasing ∧ + (fst x) is_supremum (λn.fst (a n)) → a ↑ x. +intros; split; cases H; clear H; +[1: apply H1; +|2: cases H2; split; clear H2; + [1: apply H; + |2: clear H; intro y0; apply (H3 (fst y0));]] +qed. + +lemma segment_preserves_infimum: + ∀O:ordered_set.∀l,u:O.∀a:sequence {[l,u]}.∀x:{[l,u]}. + (λn.fst (a n)) is_decreasing ∧ + (fst x) is_infimum (λn.fst (a n)) → a ↓ x. +intros; split; cases H; clear H; +[1: apply H1; +|2: cases H2; split; clear H2; + [1: apply H; + |2: clear H; intro y0; apply (H3 (fst y0));]] +qed. + + +(* Definition 2.10 *) +coinductive pair (A,B:Type) : Type ≝ prod : ∀a:A.∀b:B.pair A B. +definition first : ∀A.∀P.pair A P → A ≝ λA,P,s.match s with [prod x _ ⇒ x]. +definition second : ∀A.∀P.pair A P → P ≝ λA,P,s.match s with [prod _ y ⇒ y]. + +interpretation "pair pi1" 'pi1 x = (first _ _ x). +interpretation "pair pi2" 'pi2 x = (second _ _ x). + +notation "hvbox(\langle a, break b\rangle)" non associative with precedence 91 for @{ 'pair $a $b}. +interpretation "pair" 'pair a b = (prod _ _ a b). + +notation "a \times b" left associative with precedence 60 for @{'prod $a $b}. +interpretation "prod" 'prod a b = (pair a b). + +lemma square_ordered_set: ordered_set → ordered_set. +intro O; apply (mk_ordered_set (O × O)); +[1: intros (x y); apply (fst x ≰ fst y ∨ snd x ≰ snd y); +|2: intro x0; cases x0 (x y); clear x0; simplify; intro H; + cases H (X X); apply (os_coreflexive ?? X); +|3: intros 3 (x0 y0 z0); cases x0 (x1 x2); cases y0 (y1 y2) ; cases z0 (z1 z2); + clear x0 y0 z0; simplify; intro H; cases H (H1 H1); clear H; + [1: cases (os_cotransitive ??? z1 H1); [left; left|right;left]assumption; + |2: cases (os_cotransitive ??? z2 H1); [left;right|right;right]assumption]] +qed. + +notation < "s 2 \atop \nleq" non associative with precedence 90 + for @{ 'square $s }. +notation > "s 'square'" non associative with precedence 90 + for @{ 'square $s }. +interpretation "ordered set square" 'square s = (square_ordered_set s). + +definition square_segment ≝ + λO:ordered_set.λa,b:O.λx:square_ordered_set O. + (cic:/matita/logic/connectives/And.ind#xpointer(1/1) + (cic:/matita/logic/connectives/And.ind#xpointer(1/1) (fst x ≤ b) (a ≤ fst x)) + (cic:/matita/logic/connectives/And.ind#xpointer(1/1) (snd x ≤ b) (a ≤ snd x))). + +definition convex ≝ + λO:ordered_set.λU:O square → Prop. + ∀p.U p → fst p ≤ snd p → ∀y. square_segment ? (fst p) (snd p) y → U y. + +(* Definition 2.11 *) +definition upper_located ≝ + λO:ordered_set.λa:sequence O.∀x,y:O. y ≰ x → + (∃i:nat.a i ≰ x) ∨ (∃b:O.y≰b ∧ ∀i:nat.a i ≤ b). + +definition lower_located ≝ + λO:ordered_set.λa:sequence O.∀x,y:O. x ≰ y → + (∃i:nat.x ≰ a i) ∨ (∃b:O.b≰y ∧ ∀i:nat.b ≤ a i). + +notation < "s \nbsp 'is_upper_located'" non associative with precedence 50 + for @{'upper_located $s}. +notation > "s 'is_upper_located'" non associative with precedence 50 + for @{'upper_located $s}. +interpretation "Ordered set upper locatedness" 'upper_located s = + (upper_located _ s). +notation < "s \nbsp 'is_lower_located'" non associative with precedence 50 + for @{'lower_located $s}. +notation > "s 'is_lower_located'" non associative with precedence 50 + for @{'lower_located $s}. +interpretation "Ordered set lower locatedness" 'lower_located s = + (lower_located _ s). +(* Lemma 2.12 *) +lemma uparrow_upperlocated: + ∀C:ordered_set.∀a:sequence C.∀u:C.a ↑ u → a is_upper_located. +intros (C a u H); cases H (H2 H3); clear H; intros 3 (x y Hxy); +cases H3 (H4 H5); clear H3; cases (os_cotransitive ??? u Hxy) (W W); +[2: cases (H5 ? W) (w Hw); left; exists [apply w] assumption; +|1: right; exists [apply u]; split; [apply W|apply H4]] +qed. + +lemma downarrow_lowerlocated: + ∀C:ordered_set.∀a:sequence C.∀u:C.a ↓ u → a is_lower_located. +intros (C a u H); cases H (H2 H3); clear H; intros 3 (x y Hxy); +cases H3 (H4 H5); clear H3; cases (os_cotransitive ??? u Hxy) (W W); +[1: cases (H5 ? W) (w Hw); left; exists [apply w] assumption; +|2: right; exists [apply u]; split; [apply W|apply H4]] +qed.