X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fsupremum.ma;h=6d5879a8378e6fcd92c71dfeeba7785af5942580;hb=7e33e23e18dc5d008b3b3dc0052aa4d7b236415e;hp=50b1ebedae5d64b9f1a8842fea85e20c440410af;hpb=9eabe046c1182960de8cfdba96c5414224e3a61e;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/supremum.ma b/helm/software/matita/contribs/dama/dama/supremum.ma index 50b1ebeda..6d5879a83 100644 --- a/helm/software/matita/contribs/dama/dama/supremum.ma +++ b/helm/software/matita/contribs/dama/dama/supremum.ma @@ -12,8 +12,11 @@ (* *) (**************************************************************************) + +include "datatypes/constructors.ma". +include "nat/plus.ma". +include "nat_ordered_set.ma". include "sequence.ma". -include "ordered_set.ma". (* Definition 2.4 *) definition upper_bound ≝ λO:ordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤ u. @@ -27,40 +30,38 @@ definition infimum ≝ definition increasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a n ≤ a (S n). definition decreasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a (S n) ≤ a n. -notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 50 +notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 45 for @{'upper_bound $s $x}. -notation < "x \nbsp 'is_lower_bound' \nbsp s" non associative with precedence 50 +notation < "x \nbsp 'is_lower_bound' \nbsp s" non associative with precedence 45 for @{'lower_bound $s $x}. -notation < "s \nbsp 'is_increasing'" non associative with precedence 50 +notation < "s \nbsp 'is_increasing'" non associative with precedence 45 for @{'increasing $s}. -notation < "s \nbsp 'is_decreasing'" non associative with precedence 50 +notation < "s \nbsp 'is_decreasing'" non associative with precedence 45 for @{'decreasing $s}. -notation < "x \nbsp 'is_supremum' \nbsp s" non associative with precedence 50 +notation < "x \nbsp 'is_supremum' \nbsp s" non associative with precedence 45 for @{'supremum $s $x}. -notation < "x \nbsp 'is_infimum' \nbsp s" non associative with precedence 50 +notation < "x \nbsp 'is_infimum' \nbsp s" non associative with precedence 45 for @{'infimum $s $x}. -notation > "x 'is_upper_bound' s" non associative with precedence 50 +notation > "x 'is_upper_bound' s" non associative with precedence 45 for @{'upper_bound $s $x}. -notation > "x 'is_lower_bound' s" non associative with precedence 50 +notation > "x 'is_lower_bound' s" non associative with precedence 45 for @{'lower_bound $s $x}. -notation > "s 'is_increasing'" non associative with precedence 50 +notation > "s 'is_increasing'" non associative with precedence 45 for @{'increasing $s}. -notation > "s 'is_decreasing'" non associative with precedence 50 +notation > "s 'is_decreasing'" non associative with precedence 45 for @{'decreasing $s}. -notation > "x 'is_supremum' s" non associative with precedence 50 +notation > "x 'is_supremum' s" non associative with precedence 45 for @{'supremum $s $x}. -notation > "x 'is_infimum' s" non associative with precedence 50 +notation > "x 'is_infimum' s" non associative with precedence 45 for @{'infimum $s $x}. interpretation "Ordered set upper bound" 'upper_bound s x = (upper_bound _ s x). interpretation "Ordered set lower bound" 'lower_bound s x = (lower_bound _ s x). -interpretation "Ordered set increasing" 'increasing s = (increasing _ s). -interpretation "Ordered set decreasing" 'decreasing s = (decreasing _ s). -interpretation "Ordered set strong sup" 'supremum s x = (supremum _ s x). -interpretation "Ordered set strong inf" 'infimum s x = (infimum _ s x). - -include "bishop_set.ma". +interpretation "Ordered set increasing" 'increasing s = (increasing _ s). +interpretation "Ordered set decreasing" 'decreasing s = (decreasing _ s). +interpretation "Ordered set strong sup" 'supremum s x = (supremum _ s x). +interpretation "Ordered set strong inf" 'infimum s x = (infimum _ s x). lemma uniq_supremum: ∀O:ordered_set.∀s:sequence O.∀t1,t2:O. @@ -79,13 +80,19 @@ intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; cases (H1 ? H) (w Hw); apply Hv; assumption; qed. +lemma infimum_is_lower_bound: + ∀C:ordered_set.∀a:sequence C.∀u:C. + u is_infimum a → ∀v.v is_lower_bound a → v ≤ u. +intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; +cases (H1 ? H) (w Hw); apply Hv; assumption; +qed. + (* Lemma 2.6 *) definition strictly_increasing ≝ λC:ordered_set.λa:sequence C.∀n:nat.a (S n) ≰ a n. definition strictly_decreasing ≝ λC:ordered_set.λa:sequence C.∀n:nat.a n ≰ a (S n). - notation < "s \nbsp 'is_strictly_increasing'" non associative with precedence 50 for @{'strictly_increasing $s}. notation > "s 'is_strictly_increasing'" non associative with precedence 50 @@ -98,25 +105,26 @@ notation > "s 'is_strictly_decreasing'" non associative with precedence 50 for @{'strictly_decreasing $s}. interpretation "Ordered set strict decreasing" 'strictly_decreasing s = (strictly_decreasing _ s). - -notation "a \uparrow u" non associative with precedence 50 for @{'sup_inc $a $u}. -interpretation "Ordered set supremum of increasing" 'sup_inc s u = - (cic:/matita/dama/cprop_connectives/And.ind#xpointer(1/1) - (increasing _ s) - (supremum _ s u)). -notation "a \downarrow u" non associative with precedence 50 for @{'inf_dec $a $u}. -interpretation "Ordered set supremum of increasing" 'inf_dec s u = - (cic:/matita/dama/cprop_connectives/And.ind#xpointer(1/1) - (decreasing _ s) - (infimum _ s u)). -include "nat/plus.ma". -include "nat_ordered_set.ma". - -alias symbol "nleq" = "Ordered set excess". -alias symbol "leq" = "Ordered set less or equal than". +definition uparrow ≝ + λC:ordered_set.λs:sequence C.λu:C. + s is_increasing ∧ u is_supremum s. + +definition downarrow ≝ + λC:ordered_set.λs:sequence C.λu:C. + s is_decreasing ∧ u is_infimum s. + +notation < "a \uparrow \nbsp u" non associative with precedence 45 for @{'sup_inc $a $u}. +notation > "a \uparrow u" non associative with precedence 45 for @{'sup_inc $a $u}. +interpretation "Ordered set uparrow" 'sup_inc s u = (uparrow _ s u). + +notation < "a \downarrow \nbsp u" non associative with precedence 45 for @{'inf_dec $a $u}. +notation > "a \downarrow u" non associative with precedence 45 for @{'inf_dec $a $u}. +interpretation "Ordered set downarrow" 'inf_dec s u = (downarrow _ s u). + lemma trans_increasing: - ∀C:ordered_set.∀a:sequence C.a is_increasing → ∀n,m:nat_ordered_set. n ≤ m → a n ≤ a m. + ∀C:ordered_set.∀a:sequence C.a is_increasing → + ∀n,m:nat_ordered_set. n ≤ m → a n ≤ a m. intros 5 (C a Hs n m); elim m; [ rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); intro X; cases (os_coreflexive ?? X);] @@ -126,8 +134,21 @@ cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] qed. +lemma trans_decreasing: + ∀C:ordered_set.∀a:sequence C.a is_decreasing → + ∀n,m:nat_ordered_set. n ≤ m → a m ≤ a n. +intros 5 (C a Hs n m); elim m; [ + rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); + intro X; cases (os_coreflexive ?? X);] +cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; +[2: rewrite > H2; intro; cases (os_coreflexive ?? H1); +|1: apply (le_transitive ???? (Hs ?) (H ?)); + intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] +qed. + lemma trans_increasing_exc: - ∀C:ordered_set.∀a:sequence C.a is_increasing → ∀n,m:nat_ordered_set. m ≰ n → a n ≤ a m. + ∀C:ordered_set.∀a:sequence C.a is_increasing → + ∀n,m:nat_ordered_set. m ≰ n → a n ≤ a m. intros 5 (C a Hs n m); elim m; [cases (not_le_Sn_O n H);] intro; apply H; [1: change in n1 with (os_carr nat_ordered_set); (* canonical structures *) @@ -138,6 +159,20 @@ intro; apply H; cases (Hs n1); assumption;] qed. +lemma trans_decreasing_exc: + ∀C:ordered_set.∀a:sequence C.a is_decreasing → + ∀n,m:nat_ordered_set. m ≰ n → a m ≤ a n . +intros 5 (C a Hs n m); elim m; [cases (not_le_Sn_O n H);] +intro; apply H; +[1: change in n1 with (os_carr nat_ordered_set); (* canonical structures *) + change with (n "a 'order_converges' x" non associative with precedence 50 +notation > "a 'order_converges' x" non associative with precedence 45 for @{'order_converge $a $x}. interpretation "Order convergence" 'order_converge s u = (order_converge _ s u). (* Definition 2.8 *) +alias symbol "and" = "constructive and". +definition segment ≝ λO:ordered_set.λa,b:O.λx:O.(x ≤ b) ∧ (a ≤ x). -definition segment ≝ λO:ordered_set.λa,b:O.λx:O. - (cic:/matita/logic/connectives/And.ind#xpointer(1/1) (x ≤ b) (a ≤ x)). - -notation "[a,b]" non associative with precedence 50 - for @{'segment $a $b}. +notation "[a,b]" left associative with precedence 70 for @{'segment $a $b}. interpretation "Ordered set sergment" 'segment a b = (segment _ a b). -notation "hvbox(x \in break [a,b])" non associative with precedence 50 - for @{'segment2 $a $b $x}. -interpretation "Ordered set sergment in" 'segment2 a b x= (segment _ a b x). - -coinductive sigma (A:Type) (P:A→Prop) : Type ≝ sig_in : ∀x.P x → sigma A P. - -definition pi1 : ∀A.∀P.sigma A P → A ≝ λA,P,s.match s with [sig_in x _ ⇒ x]. - -notation < "'fst' \nbsp x" non associative with precedence 50 for @{'pi1 $x}. -notation < "'snd' \nbsp x" non associative with precedence 50 for @{'pi2 $x}. -notation > "'fst' x" non associative with precedence 50 for @{'pi1 $x}. -notation > "'snd' x" non associative with precedence 50 for @{'pi2 $x}. -interpretation "sigma pi1" 'pi1 x = (pi1 _ _ x). - -interpretation "Type exists" 'exists \eta.x = - (cic:/matita/dama/supremum/sigma.ind#xpointer(1/1) _ x). +notation "hvbox(x \in break [a,b])" non associative with precedence 45 + for @{'segment_in $a $b $x}. +interpretation "Ordered set sergment in" 'segment_in a b x= (segment _ a b x). lemma segment_ordered_set: ∀O:ordered_set.∀u,v:O.ordered_set. @@ -218,13 +248,13 @@ qed. notation "hvbox({[a, break b]})" non associative with precedence 90 for @{'segment_set $a $b}. interpretation "Ordered set segment" 'segment_set a b = - (segment_ordered_set _ a b). + (segment_ordered_set _ a b). (* Lemma 2.9 *) lemma segment_preserves_supremum: ∀O:ordered_set.∀l,u:O.∀a:sequence {[l,u]}.∀x:{[l,u]}. - (λn.fst (a n)) is_increasing ∧ - (fst x) is_supremum (λn.fst (a n)) → a ↑ x. + ⌊n,fst (a n)⌋ is_increasing ∧ + (fst x) is_supremum ⌊n,fst (a n)⌋ → a ↑ x. intros; split; cases H; clear H; [1: apply H1; |2: cases H2; split; clear H2; @@ -232,46 +262,28 @@ intros; split; cases H; clear H; |2: clear H; intro y0; apply (H3 (fst y0));]] qed. -(* Definition 2.10 *) -coinductive pair (A,B:Type) : Type ≝ prod : ∀a:A.∀b:B.pair A B. -definition first : ∀A.∀P.pair A P → A ≝ λA,P,s.match s with [prod x _ ⇒ x]. -definition second : ∀A.∀P.pair A P → P ≝ λA,P,s.match s with [prod _ y ⇒ y]. - -interpretation "pair pi1" 'pi1 x = (first _ _ x). -interpretation "pair pi2" 'pi2 x = (second _ _ x). - -notation "hvbox(\langle a, break b\rangle)" non associative with precedence 91 for @{ 'pair $a $b}. -interpretation "pair" 'pair a b = (prod _ _ a b). - -notation "a \times b" left associative with precedence 60 for @{'prod $a $b}. -interpretation "prod" 'prod a b = (pair a b). - -lemma square_ordered_set: ordered_set → ordered_set. -intro O; apply (mk_ordered_set (O × O)); -[1: intros (x y); apply (fst x ≰ fst y ∨ snd x ≰ snd y); -|2: intro x0; cases x0 (x y); clear x0; simplify; intro H; - cases H (X X); apply (os_coreflexive ?? X); -|3: intros 3 (x0 y0 z0); cases x0 (x1 x2); cases y0 (y1 y2) ; cases z0 (z1 z2); - clear x0 y0 z0; simplify; intro H; cases H (H1 H1); clear H; - [1: cases (os_cotransitive ??? z1 H1); [left; left|right;left]assumption; - |2: cases (os_cotransitive ??? z2 H1); [left;right|right;right]assumption]] +lemma segment_preserves_infimum: + ∀O:ordered_set.∀l,u:O.∀a:sequence {[l,u]}.∀x:{[l,u]}. + ⌊n,fst (a n)⌋ is_decreasing ∧ + (fst x) is_infimum ⌊n,fst (a n)⌋ → a ↓ x. +intros; split; cases H; clear H; +[1: apply H1; +|2: cases H2; split; clear H2; + [1: apply H; + |2: clear H; intro y0; apply (H3 (fst y0));]] qed. -notation < "s 2 \atop \nleq" non associative with precedence 90 - for @{ 'square $s }. -notation > "s 'square'" non associative with precedence 90 - for @{ 'square $s }. -interpretation "ordered set square" 'square s = (square_ordered_set s). - +(* Definition 2.10 *) +alias symbol "square" = "ordered set square". +alias symbol "pi2" = "pair pi2". +alias symbol "pi1" = "pair pi1". definition square_segment ≝ - λO:ordered_set.λa,b:O.λx:square_ordered_set O. - (cic:/matita/logic/connectives/And.ind#xpointer(1/1) - (cic:/matita/logic/connectives/And.ind#xpointer(1/1) (fst x ≤ b) (a ≤ fst x)) - (cic:/matita/logic/connectives/And.ind#xpointer(1/1) (snd x ≤ b) (a ≤ snd x))). + λO:ordered_set.λa,b:O.λx:O square. + And4 (fst x ≤ b) (a ≤ fst x) (snd x ≤ b) (a ≤ snd x). definition convex ≝ λO:ordered_set.λU:O square → Prop. - ∀p.U p → fst p ≤ snd p → ∀y. square_segment ? (fst p) (snd p) y → U y. + ∀p.U p → fst p ≤ snd p → ∀y. square_segment ? (fst p) (snd p) y → U y. (* Definition 2.11 *) definition upper_located ≝ @@ -282,18 +294,18 @@ definition lower_located ≝ λO:ordered_set.λa:sequence O.∀x,y:O. x ≰ y → (∃i:nat.x ≰ a i) ∨ (∃b:O.b≰y ∧ ∀i:nat.b ≤ a i). -notation < "s \nbsp 'is_upper_located'" non associative with precedence 50 +notation < "s \nbsp 'is_upper_located'" non associative with precedence 45 for @{'upper_located $s}. -notation > "s 'is_upper_located'" non associative with precedence 50 +notation > "s 'is_upper_located'" non associative with precedence 45 for @{'upper_located $s}. -interpretation "Ordered set upper locatedness" 'upper_located s = +interpretation "Ordered set upper locatedness" 'upper_located s = (upper_located _ s). -notation < "s \nbsp 'is_lower_located'" non associative with precedence 50 +notation < "s \nbsp 'is_lower_located'" non associative with precedence 45 for @{'lower_located $s}. -notation > "s 'is_lower_located'" non associative with precedence 50 +notation > "s 'is_lower_located'" non associative with precedence 45 for @{'lower_located $s}. -interpretation "Ordered set lower locatedness" 'lower_located s = +interpretation "Ordered set lower locatedness" 'lower_located s = (lower_located _ s). (* Lemma 2.12 *) @@ -312,5 +324,3 @@ cases H3 (H4 H5); clear H3; cases (os_cotransitive ??? u Hxy) (W W); [1: cases (H5 ? W) (w Hw); left; exists [apply w] assumption; |2: right; exists [apply u]; split; [apply W|apply H4]] qed. - -