X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fsupremum.ma;h=7a52e5f064260f1a9f04463a4414e8b0c7b6962a;hb=c231702a57076acf0c161cdb4799bf83158175f0;hp=6fa8e35ad86df21bcad372561711315560c0ed52;hpb=80ea6f314e89d9d280338c41860cb04949319629;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/supremum.ma b/helm/software/matita/contribs/dama/dama/supremum.ma index 6fa8e35ad..7a52e5f06 100644 --- a/helm/software/matita/contribs/dama/dama/supremum.ma +++ b/helm/software/matita/contribs/dama/dama/supremum.ma @@ -19,16 +19,15 @@ include "nat_ordered_set.ma". include "sequence.ma". (* Definition 2.4 *) -definition upper_bound ≝ λO:ordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤ u. -definition lower_bound ≝ λO:ordered_set.λa:sequence O.λu:O.∀n:nat.u ≤ a n. +definition upper_bound ≝ + λO:half_ordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤≤ u. definition supremum ≝ - λO:ordered_set.λs:sequence O.λx.upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). -definition infimum ≝ - λO:ordered_set.λs:sequence O.λx.lower_bound ? s x ∧ (∀y:O.y ≰ x → ∃n.y ≰ s n). + λO:half_ordered_set.λs:sequence O.λx. + upper_bound ? s x ∧ (∀y:O.x ≰≰ y → ∃n.s n ≰≰ y). -definition increasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a n ≤ a (S n). -definition decreasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a (S n) ≤ a n. +definition increasing ≝ + λO:half_ordered_set.λa:sequence O.∀n:nat.a n ≤≤ a (S n). notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 45 for @{'upper_bound $s $x}. @@ -42,7 +41,6 @@ notation < "x \nbsp 'is_supremum' \nbsp s" non associative with precedence 45 for @{'supremum $s $x}. notation < "x \nbsp 'is_infimum' \nbsp s" non associative with precedence 45 for @{'infimum $s $x}. - notation > "x 'is_upper_bound' s" non associative with precedence 45 for @{'upper_bound $s $x}. notation > "x 'is_lower_bound' s" non associative with precedence 45 @@ -56,125 +54,102 @@ notation > "x 'is_supremum' s" non associative with precedence 45 notation > "x 'is_infimum' s" non associative with precedence 45 for @{'infimum $s $x}. -interpretation "Ordered set upper bound" 'upper_bound s x = (upper_bound _ s x). -interpretation "Ordered set lower bound" 'lower_bound s x = (lower_bound _ s x). -interpretation "Ordered set increasing" 'increasing s = (increasing _ s). -interpretation "Ordered set decreasing" 'decreasing s = (decreasing _ s). -interpretation "Ordered set strong sup" 'supremum s x = (supremum _ s x). -interpretation "Ordered set strong inf" 'infimum s x = (infimum _ s x). - -lemma uniq_supremum: - ∀O:ordered_set.∀s:sequence O.∀t1,t2:O. - t1 is_supremum s → t2 is_supremum s → t1 ≈ t2. -intros (O s t1 t2 Ht1 Ht2); cases Ht1 (U1 H1); cases Ht2 (U2 H2); -apply le_le_eq; intro X; -[1: cases (H1 ? X); apply (U2 w); assumption -|2: cases (H2 ? X); apply (U1 w); assumption] -qed. +interpretation "Ordered set upper bound" 'upper_bound s x = (upper_bound (os_l _) s x). +interpretation "Ordered set lower bound" 'lower_bound s x = (upper_bound (os_r _) s x). + +interpretation "Ordered set increasing" 'increasing s = (increasing (os_l _) s). +interpretation "Ordered set decreasing" 'decreasing s = (increasing (os_r _) s). +interpretation "Ordered set strong sup" 'supremum s x = (supremum (os_l _) s x). +interpretation "Ordered set strong inf" 'infimum s x = (supremum (os_r _) s x). + (* Fact 2.5 *) -lemma supremum_is_upper_bound: - ∀C:ordered_set.∀a:sequence C.∀u:C. - u is_supremum a → ∀v.v is_upper_bound a → u ≤ v. +lemma h_supremum_is_upper_bound: + ∀C:half_ordered_set.∀a:sequence C.∀u:C. + supremum ? a u → ∀v.upper_bound ? a v → u ≤≤ v. intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; -cases (H1 ? H) (w Hw); apply Hv; assumption; +cases (H1 ? H) (w Hw); apply Hv; [apply w] assumption; qed. -lemma infimum_is_lower_bound: - ∀C:ordered_set.∀a:sequence C.∀u:C. - u is_infimum a → ∀v.v is_lower_bound a → v ≤ u. -intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; -cases (H1 ? H) (w Hw); apply Hv; assumption; -qed. +notation "'supremum_is_upper_bound'" non associative with precedence 90 for @{'supremum_is_upper_bound}. +notation "'infimum_is_lower_bound'" non associative with precedence 90 for @{'infimum_is_lower_bound}. + +interpretation "supremum_is_upper_bound" 'supremum_is_upper_bound = (h_supremum_is_upper_bound (os_l _)). +interpretation "infimum_is_lower_bound" 'infimum_is_lower_bound = (h_supremum_is_upper_bound (os_r _)). (* Lemma 2.6 *) definition strictly_increasing ≝ - λC:ordered_set.λa:sequence C.∀n:nat.a (S n) ≰ a n. -definition strictly_decreasing ≝ - λC:ordered_set.λa:sequence C.∀n:nat.a n ≰ a (S n). + λC:half_ordered_set.λa:sequence C.∀n:nat.a (S n) ≰≰ a n. notation < "s \nbsp 'is_strictly_increasing'" non associative with precedence 45 for @{'strictly_increasing $s}. notation > "s 'is_strictly_increasing'" non associative with precedence 45 for @{'strictly_increasing $s}. interpretation "Ordered set strict increasing" 'strictly_increasing s = - (strictly_increasing _ s). + (strictly_increasing (os_l _) s). + notation < "s \nbsp 'is_strictly_decreasing'" non associative with precedence 45 for @{'strictly_decreasing $s}. notation > "s 'is_strictly_decreasing'" non associative with precedence 45 for @{'strictly_decreasing $s}. interpretation "Ordered set strict decreasing" 'strictly_decreasing s = - (strictly_decreasing _ s). + (strictly_increasing (os_r _) s). definition uparrow ≝ - λC:ordered_set.λs:sequence C.λu:C. - s is_increasing ∧ u is_supremum s. - -definition downarrow ≝ - λC:ordered_set.λs:sequence C.λu:C. - s is_decreasing ∧ u is_infimum s. - -notation < "a \uparrow \nbsp u" non associative with precedence 45 for @{'sup_inc $a $u}. -notation > "a \uparrow u" non associative with precedence 45 for @{'sup_inc $a $u}. -interpretation "Ordered set uparrow" 'sup_inc s u = (uparrow _ s u). + λC:half_ordered_set.λs:sequence C.λu:C. + increasing ? s ∧ supremum ? s u. -notation < "a \downarrow \nbsp u" non associative with precedence 45 for @{'inf_dec $a $u}. -notation > "a \downarrow u" non associative with precedence 45 for @{'inf_dec $a $u}. -interpretation "Ordered set downarrow" 'inf_dec s u = (downarrow _ s u). +interpretation "Ordered set uparrow" 'funion s u = (uparrow (os_l _) s u). +interpretation "Ordered set downarrow" 'fintersects s u = (uparrow (os_r _) s u). -lemma trans_increasing: - ∀C:ordered_set.∀a:sequence C.a is_increasing → - ∀n,m:nat_ordered_set. n ≤ m → a n ≤ a m. +lemma h_trans_increasing: + ∀C:half_ordered_set.∀a:sequence C.increasing ? a → + ∀n,m:nat_ordered_set. n ≤ m → a n ≤≤ a m. intros 5 (C a Hs n m); elim m; [ rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); - intro X; cases (os_coreflexive ?? X);] + intro X; cases (hos_coreflexive ? (a n) X);] cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; -[2: rewrite > H2; intro; cases (os_coreflexive ?? H1); -|1: apply (le_transitive ???? (H ?) (Hs ?)); +[2: rewrite > H2; intro; cases (hos_coreflexive ? (a (S n1)) H1); +|1: apply (hle_transitive ???? (H ?) (Hs ?)); intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] qed. -lemma trans_decreasing: - ∀C:ordered_set.∀a:sequence C.a is_decreasing → - ∀n,m:nat_ordered_set. n ≤ m → a m ≤ a n. -intros 5 (C a Hs n m); elim m; [ - rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); - intro X; cases (os_coreflexive ?? X);] -cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; -[2: rewrite > H2; intro; cases (os_coreflexive ?? H1); -|1: apply (le_transitive ???? (Hs ?) (H ?)); - intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] -qed. +notation "'trans_increasing'" non associative with precedence 90 for @{'trans_increasing}. +notation "'trans_decreasing'" non associative with precedence 90 for @{'trans_decreasing}. -lemma trans_increasing_exc: - ∀C:ordered_set.∀a:sequence C.a is_increasing → - ∀n,m:nat_ordered_set. m ≰ n → a n ≤ a m. -intros 5 (C a Hs n m); elim m; [cases (not_le_Sn_O n H);] -intro; apply H; -[1: change in n1 with (os_carr nat_ordered_set); (* canonical structures *) - change with (n "a 'order_converges' x" non associative with precedence 45 interpretation "Order convergence" 'order_converge s u = (order_converge _ s u). (* Definition 2.8 *) -definition segment ≝ λO:ordered_set.λa,b:O.λx:O.(x ≤ b) ∧ (a ≤ x). +record segment (O : Type) : Type ≝ { + seg_l_ : O; + seg_u_ : O +}. + +notation > "𝕦_term 90 s p" non associative with precedence 45 for @{'upp $s $p}. +notation "𝕦 \sub term 90 s p" non associative with precedence 45 for @{'upp $s $p}. +notation > "𝕝_term 90 s p" non associative with precedence 45 for @{'low $s $p}. +notation "𝕝 \sub term 90 s p" non associative with precedence 45 for @{'low $s $p}. + +definition seg_u ≝ + λO:half_ordered_set.λs:segment O.λP: O → CProp. + wloss O ? (λl,u.P u) (seg_l_ ? s) (seg_u_ ? s). +definition seg_l ≝ + λO:half_ordered_set.λs:segment O.λP: O → CProp. + wloss O ? (λl,u.P u) (seg_u_ ? s) (seg_l_ ? s). + +interpretation "uppper" 'upp s P = (seg_u (os_l _) s P). +interpretation "lower" 'low s P = (seg_l (os_l _) s P). +interpretation "uppper dual" 'upp s P = (seg_l (os_r _) s P). +interpretation "lower dual" 'low s P = (seg_u (os_r _) s P). + +definition in_segment ≝ + λO:half_ordered_set.λs:segment O.λx:O. + wloss O ? (λp1,p2.p1 ∧ p2) (seg_u ? s (λu.u ≤≤ x)) (seg_l ? s (λl.x ≤≤ l)). + +notation "‡O" non associative with precedence 90 for @{'segment $O}. +interpretation "Ordered set sergment" 'segment x = (segment x). + +interpretation "Ordered set sergment in" 'mem x s = (in_segment _ s x). + +definition segment_ordered_set_carr ≝ + λO:half_ordered_set.λs:‡O.∃x.x ∈ s. +definition segment_ordered_set_exc ≝ + λO:half_ordered_set.λs:‡O. + λx,y:segment_ordered_set_carr O s.hos_excess_ O (\fst x) (\fst y). +lemma segment_ordered_set_corefl: + ∀O,s. coreflexive ? (wloss O ? (segment_ordered_set_exc O s)). +intros 3; cases x; cases (wloss_prop O); +generalize in match (hos_coreflexive O w); +rewrite < (H1 ? (segment_ordered_set_exc O s)); +rewrite < (H1 ? (hos_excess_ O)); intros; assumption; +qed. +lemma segment_ordered_set_cotrans : + ∀O,s. cotransitive ? (wloss O ? (segment_ordered_set_exc O s)). +intros 5 (O s x y z); cases x; cases y ; cases z; clear x y z; +generalize in match (hos_cotransitive O w w1 w2); +cases (wloss_prop O); +do 3 rewrite < (H3 ? (segment_ordered_set_exc O s)); +do 3 rewrite < (H3 ? (hos_excess_ O)); intros; apply H4; assumption; +qed. + +lemma half_segment_ordered_set: + ∀O:half_ordered_set.∀s:segment O.half_ordered_set. +intros (O a); constructor 1; +[ apply (segment_ordered_set_carr O a); +| apply (wloss O); +| apply (wloss_prop O); +| apply (segment_ordered_set_exc O a); +| apply (segment_ordered_set_corefl O a); +| apply (segment_ordered_set_cotrans ??); +] +qed. + +lemma segment_ordered_set: + ∀O:ordered_set.∀s:‡O.ordered_set. +intros (O s); +apply half2full; apply (half_segment_ordered_set (os_l O) s); +qed. -notation "[term 19 a,term 19 b]" non associative with precedence 90 for @{'segment $a $b}. -interpretation "Ordered set sergment" 'segment a b = (segment _ a b). +notation "{[ term 19 s ]}" non associative with precedence 90 for @{'segset $s}. +interpretation "Ordered set segment" 'segset s = (segment_ordered_set _ s). + +(* test : + ∀O:ordered_set.∀s: segment (os_l O).∀x:O. + in_segment (os_l O) s x + = + in_segment (os_r O) s x. +intros; try reflexivity; +*) + +definition hint_sequence: + ∀C:ordered_set. + sequence (hos_carr (os_l C)) → sequence (Type_of_ordered_set C). +intros;assumption; +qed. -notation "hvbox(x \in break [term 19 a, term 19 b])" non associative with precedence 45 - for @{'segment_in $a $b $x}. -interpretation "Ordered set sergment in" 'segment_in a b x= (segment _ a b x). +definition hint_sequence1: + ∀C:ordered_set. + sequence (hos_carr (os_r C)) → sequence (Type_of_ordered_set_dual C). +intros;assumption; +qed. -lemma segment_ordered_set: - ∀O:ordered_set.∀u,v:O.ordered_set. -intros (O u v); apply (mk_ordered_set (∃x.x ∈ [u,v])); -[1: intros (x y); apply (\fst x ≰ \fst y); -|2: intro x; cases x; simplify; apply os_coreflexive; -|3: intros 3 (x y z); cases x; cases y ; cases z; simplify; apply os_cotransitive] +definition hint_sequence2: + ∀C:ordered_set. + sequence (Type_of_ordered_set C) → sequence (hos_carr (os_l C)). +intros;assumption; +qed. + +definition hint_sequence3: + ∀C:ordered_set. + sequence (Type_of_ordered_set_dual C) → sequence (hos_carr (os_r C)). +intros;assumption; +qed. + +coercion hint_sequence nocomposites. +coercion hint_sequence1 nocomposites. +coercion hint_sequence2 nocomposites. +coercion hint_sequence3 nocomposites. + +(* Lemma 2.9 - non easily dualizable *) + +lemma x2sx: + ∀O:half_ordered_set. + ∀s:segment O.∀x,y:half_segment_ordered_set ? s. + \fst x ≰≰ \fst y → x ≰≰ y. +intros 4; cases x; cases y; clear x y; simplify; unfold hos_excess; +whd in ⊢ (?→? (% ? ?) ? ? ? ?); simplify in ⊢ (?→%); +cases (wloss_prop O) (E E); do 2 rewrite < E; intros; assumption; qed. -notation "hvbox({[a, break b]})" non associative with precedence 90 - for @{'segment_set $a $b}. -interpretation "Ordered set segment" 'segment_set a b = - (segment_ordered_set _ a b). +lemma sx2x: + ∀O:half_ordered_set. + ∀s:segment O.∀x,y:half_segment_ordered_set ? s. + x ≰≰ y → \fst x ≰≰ \fst y. +intros 4; cases x; cases y; clear x y; simplify; unfold hos_excess; +whd in ⊢ (? (% ? ?) ? ? ? ? → ?); simplify in ⊢ (% → ?); +cases (wloss_prop O) (E E); do 2 rewrite < E; intros; assumption; +qed. -(* Lemma 2.9 *) -lemma segment_preserves_supremum: - ∀O:ordered_set.∀l,u:O.∀a:sequence {[l,u]}.∀x:{[l,u]}. - ⌊n,\fst (a n)⌋ is_increasing ∧ - (\fst x) is_supremum ⌊n,\fst (a n)⌋ → a ↑ x. +lemma h_segment_preserves_supremum: + ∀O:half_ordered_set.∀s:segment O. + ∀a:sequence (half_segment_ordered_set ? s). + ∀x:half_segment_ordered_set ? s. + increasing ? ⌊n,\fst (a n)⌋ ∧ + supremum ? ⌊n,\fst (a n)⌋ (\fst x) → uparrow ? a x. intros; split; cases H; clear H; -[1: apply H1; +[1: intro n; lapply (H1 n) as K; clear H1 H2; + intro; apply K; clear K; apply (sx2x ???? H); |2: cases H2; split; clear H2; - [1: apply H; - |2: clear H; intro y0; apply (H3 (\fst y0));]] + [1: intro n; lapply (H n) as K; intro W; apply K; + apply (sx2x ???? W); + |2: clear H1 H; intros (y0 Hy0); cases (H3 (\fst y0));[exists[apply w]] + [1: change in H with (\fst (a w) ≰≰ \fst y0); apply (x2sx ???? H); + |2: apply (sx2x ???? Hy0);]]] qed. -lemma segment_preserves_infimum: - ∀O:ordered_set.∀l,u:O.∀a:sequence {[l,u]}.∀x:{[l,u]}. +notation "'segment_preserves_supremum'" non associative with precedence 90 for @{'segment_preserves_supremum}. +notation "'segment_preserves_infimum'" non associative with precedence 90 for @{'segment_preserves_infimum}. + +interpretation "segment_preserves_supremum" 'segment_preserves_supremum = (h_segment_preserves_supremum (os_l _)). +interpretation "segment_preserves_infimum" 'segment_preserves_infimum = (h_segment_preserves_supremum (os_r _)). + +(* TEST, ma quanto godo! *) +lemma segment_preserves_infimum2: + ∀O:ordered_set.∀s:‡O.∀a:sequence {[s]}.∀x:{[s]}. ⌊n,\fst (a n)⌋ is_decreasing ∧ (\fst x) is_infimum ⌊n,\fst (a n)⌋ → a ↓ x. -intros; split; cases H; clear H; -[1: apply H1; -|2: cases H2; split; clear H2; - [1: apply H; - |2: clear H; intro y0; apply (H3 (\fst y0));]] +intros; apply (segment_preserves_infimum s a x H); qed. - +*) + (* Definition 2.10 *) -alias symbol "square" = "ordered set square". alias symbol "pi2" = "pair pi2". alias symbol "pi1" = "pair pi1". definition square_segment ≝ - λO:ordered_set.λa,b:O.λx:O square. + λO:ordered_set.λa,b:O.λx: O squareO. And4 (\fst x ≤ b) (a ≤ \fst x) (\snd x ≤ b) (a ≤ \snd x). definition convex ≝ - λO:ordered_set.λU:O square → Prop. - ∀p.U p → \fst p ≤ \snd p → ∀y. square_segment ? (\fst p) (\snd p) y → U y. + λO:ordered_set.λU:O squareO → Prop. + ∀p.U p → \fst p ≤ \snd p → ∀y. + square_segment O (\fst p) (\snd p) y → U y. (* Definition 2.11 *) definition upper_located ≝ - λO:ordered_set.λa:sequence O.∀x,y:O. y ≰ x → - (∃i:nat.a i ≰ x) ∨ (∃b:O.y≰b ∧ ∀i:nat.a i ≤ b). - -definition lower_located ≝ - λO:ordered_set.λa:sequence O.∀x,y:O. x ≰ y → - (∃i:nat.x ≰ a i) ∨ (∃b:O.b≰y ∧ ∀i:nat.b ≤ a i). + λO:half_ordered_set.λa:sequence O.∀x,y:O. y ≰≰ x → + (∃i:nat.a i ≰≰ x) ∨ (∃b:O.y ≰≰ b ∧ ∀i:nat.a i ≤≤ b). notation < "s \nbsp 'is_upper_located'" non associative with precedence 45 for @{'upper_located $s}. notation > "s 'is_upper_located'" non associative with precedence 45 for @{'upper_located $s}. interpretation "Ordered set upper locatedness" 'upper_located s = - (upper_located _ s). + (upper_located (os_l _) s). notation < "s \nbsp 'is_lower_located'" non associative with precedence 45 for @{'lower_located $s}. notation > "s 'is_lower_located'" non associative with precedence 45 for @{'lower_located $s}. interpretation "Ordered set lower locatedness" 'lower_located s = - (lower_located _ s). - + (upper_located (os_r _) s). + (* Lemma 2.12 *) -lemma uparrow_upperlocated: - ∀C:ordered_set.∀a:sequence C.∀u:C.a ↑ u → a is_upper_located. +lemma h_uparrow_upperlocated: + ∀C:half_ordered_set.∀a:sequence C.∀u:C.uparrow ? a u → upper_located ? a. intros (C a u H); cases H (H2 H3); clear H; intros 3 (x y Hxy); -cases H3 (H4 H5); clear H3; cases (os_cotransitive ??? u Hxy) (W W); +cases H3 (H4 H5); clear H3; cases (hos_cotransitive ??? u Hxy) (W W); [2: cases (H5 ? W) (w Hw); left; exists [apply w] assumption; |1: right; exists [apply u]; split; [apply W|apply H4]] -qed. +qed. -lemma downarrow_lowerlocated: - ∀C:ordered_set.∀a:sequence C.∀u:C.a ↓ u → a is_lower_located. -intros (C a u H); cases H (H2 H3); clear H; intros 3 (x y Hxy); -cases H3 (H4 H5); clear H3; cases (os_cotransitive ??? u Hxy) (W W); -[1: cases (H5 ? W) (w Hw); left; exists [apply w] assumption; -|2: right; exists [apply u]; split; [apply W|apply H4]] -qed. +notation "'uparrow_upperlocated'" non associative with precedence 90 for @{'uparrow_upperlocated}. +notation "'downarrow_lowerlocated'" non associative with precedence 90 for @{'downarrow_lowerlocated}. + +interpretation "uparrow_upperlocated" 'uparrow_upperlocated = (h_uparrow_upperlocated (os_l _)). +interpretation "downarrow_lowerlocated" 'downarrow_lowerlocated = (h_uparrow_upperlocated (os_r _)).