X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Fsupremum.ma;h=7a52e5f064260f1a9f04463a4414e8b0c7b6962a;hb=c231702a57076acf0c161cdb4799bf83158175f0;hp=715fb5bdbcd5f50f87afaef34b4d27ce48a4222c;hpb=730b049302205da43d5fbe8c4450460d85e1ece5;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/supremum.ma b/helm/software/matita/contribs/dama/dama/supremum.ma index 715fb5bdb..7a52e5f06 100644 --- a/helm/software/matita/contribs/dama/dama/supremum.ma +++ b/helm/software/matita/contribs/dama/dama/supremum.ma @@ -12,48 +12,395 @@ (* *) (**************************************************************************) + +include "datatypes/constructors.ma". +include "nat/plus.ma". +include "nat_ordered_set.ma". include "sequence.ma". -include "ordered_set.ma". (* Definition 2.4 *) -definition upper_bound ≝ λO:ordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤ u. +definition upper_bound ≝ + λO:half_ordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤≤ u. -definition strong_sup ≝ - λO:ordered_set.λs:sequence O.λx.upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y). +definition supremum ≝ + λO:half_ordered_set.λs:sequence O.λx. + upper_bound ? s x ∧ (∀y:O.x ≰≰ y → ∃n.s n ≰≰ y). -definition increasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a n ≤ a (S n). +definition increasing ≝ + λO:half_ordered_set.λa:sequence O.∀n:nat.a n ≤≤ a (S n). -notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 50 +notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 45 for @{'upper_bound $s $x}. -notation < "s \nbsp 'is_increasing'" non associative with precedence 50 +notation < "x \nbsp 'is_lower_bound' \nbsp s" non associative with precedence 45 + for @{'lower_bound $s $x}. +notation < "s \nbsp 'is_increasing'" non associative with precedence 45 for @{'increasing $s}. -notation < "x \nbsp 'is_strong_sup' \nbsp s" non associative with precedence 50 - for @{'strong_sup $s $x}. - -notation > "x 'is_upper_bound' s" non associative with precedence 50 +notation < "s \nbsp 'is_decreasing'" non associative with precedence 45 + for @{'decreasing $s}. +notation < "x \nbsp 'is_supremum' \nbsp s" non associative with precedence 45 + for @{'supremum $s $x}. +notation < "x \nbsp 'is_infimum' \nbsp s" non associative with precedence 45 + for @{'infimum $s $x}. +notation > "x 'is_upper_bound' s" non associative with precedence 45 for @{'upper_bound $s $x}. -notation > "s 'is_increasing'" non associative with precedence 50 +notation > "x 'is_lower_bound' s" non associative with precedence 45 + for @{'lower_bound $s $x}. +notation > "s 'is_increasing'" non associative with precedence 45 for @{'increasing $s}. -notation > "x 'is_strong_sup' s" non associative with precedence 50 - for @{'strong_sup $s $x}. +notation > "s 'is_decreasing'" non associative with precedence 45 + for @{'decreasing $s}. +notation > "x 'is_supremum' s" non associative with precedence 45 + for @{'supremum $s $x}. +notation > "x 'is_infimum' s" non associative with precedence 45 + for @{'infimum $s $x}. + +interpretation "Ordered set upper bound" 'upper_bound s x = (upper_bound (os_l _) s x). +interpretation "Ordered set lower bound" 'lower_bound s x = (upper_bound (os_r _) s x). + +interpretation "Ordered set increasing" 'increasing s = (increasing (os_l _) s). +interpretation "Ordered set decreasing" 'decreasing s = (increasing (os_r _) s). + +interpretation "Ordered set strong sup" 'supremum s x = (supremum (os_l _) s x). +interpretation "Ordered set strong inf" 'infimum s x = (supremum (os_r _) s x). + +(* Fact 2.5 *) +lemma h_supremum_is_upper_bound: + ∀C:half_ordered_set.∀a:sequence C.∀u:C. + supremum ? a u → ∀v.upper_bound ? a v → u ≤≤ v. +intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; +cases (H1 ? H) (w Hw); apply Hv; [apply w] assumption; +qed. + +notation "'supremum_is_upper_bound'" non associative with precedence 90 for @{'supremum_is_upper_bound}. +notation "'infimum_is_lower_bound'" non associative with precedence 90 for @{'infimum_is_lower_bound}. -interpretation "Ordered set upper bound" 'upper_bound s x = - (cic:/matita/dama/supremum/upper_bound.con _ s x). -interpretation "Ordered set increasing" 'increasing s = - (cic:/matita/dama/supremum/increasing.con _ s). -interpretation "Ordered set strong sup" 'strong_sup s x = - (cic:/matita/dama/supremum/strong_sup.con _ s x). +interpretation "supremum_is_upper_bound" 'supremum_is_upper_bound = (h_supremum_is_upper_bound (os_l _)). +interpretation "infimum_is_lower_bound" 'infimum_is_lower_bound = (h_supremum_is_upper_bound (os_r _)). -include "bishop_set.ma". +(* Lemma 2.6 *) +definition strictly_increasing ≝ + λC:half_ordered_set.λa:sequence C.∀n:nat.a (S n) ≰≰ a n. + +notation < "s \nbsp 'is_strictly_increasing'" non associative with precedence 45 + for @{'strictly_increasing $s}. +notation > "s 'is_strictly_increasing'" non associative with precedence 45 + for @{'strictly_increasing $s}. +interpretation "Ordered set strict increasing" 'strictly_increasing s = + (strictly_increasing (os_l _) s). -lemma uniq_supremum: - ∀O:ordered_set.∀s:sequence O.∀t1,t2:O. - t1 is_strong_sup s → t2 is_strong_sup s → t1 ≈ t2. -intros (O s t1 t2 Ht1 Ht2); cases Ht1 (U1 H1); cases Ht2 (U2 H2); -apply le_le_eq; intro X; -[1: cases (H1 ? X); apply (U2 w); assumption -|2: cases (H2 ? X); apply (U1 w); assumption] +notation < "s \nbsp 'is_strictly_decreasing'" non associative with precedence 45 + for @{'strictly_decreasing $s}. +notation > "s 'is_strictly_decreasing'" non associative with precedence 45 + for @{'strictly_decreasing $s}. +interpretation "Ordered set strict decreasing" 'strictly_decreasing s = + (strictly_increasing (os_r _) s). + +definition uparrow ≝ + λC:half_ordered_set.λs:sequence C.λu:C. + increasing ? s ∧ supremum ? s u. + +interpretation "Ordered set uparrow" 'funion s u = (uparrow (os_l _) s u). +interpretation "Ordered set downarrow" 'fintersects s u = (uparrow (os_r _) s u). + +lemma h_trans_increasing: + ∀C:half_ordered_set.∀a:sequence C.increasing ? a → + ∀n,m:nat_ordered_set. n ≤ m → a n ≤≤ a m. +intros 5 (C a Hs n m); elim m; [ + rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); + intro X; cases (hos_coreflexive ? (a n) X);] +cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; +[2: rewrite > H2; intro; cases (hos_coreflexive ? (a (S n1)) H1); +|1: apply (hle_transitive ???? (H ?) (Hs ?)); + intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] +qed. + +notation "'trans_increasing'" non associative with precedence 90 for @{'trans_increasing}. +notation "'trans_decreasing'" non associative with precedence 90 for @{'trans_decreasing}. + +interpretation "trans_increasing" 'trans_increasing = (h_trans_increasing (os_l _)). +interpretation "trans_decreasing" 'trans_decreasing = (h_trans_increasing (os_r _)). + +lemma hint_nat : + Type_of_ordered_set nat_ordered_set → + hos_carr (os_l (nat_ordered_set)). +intros; assumption; qed. +coercion hint_nat nocomposites. +lemma h_trans_increasing_exc: + ∀C:half_ordered_set.∀a:sequence C.increasing ? a → + ∀n,m:nat_ordered_set. m ≰≰ n → a n ≤≤ a m. +intros 5 (C a Hs n m); elim m; [cases (not_le_Sn_O n H);] +intro; apply H; +[1: change in n1 with (hos_carr (os_l nat_ordered_set)); + change with (n H3; apply H;] + |2: cases (?:False); change in Hp with (n "a 'order_converges' x" non associative with precedence 45 + for @{'order_converge $a $x}. +interpretation "Order convergence" 'order_converge s u = (order_converge _ s u). + +(* Definition 2.8 *) +record segment (O : Type) : Type ≝ { + seg_l_ : O; + seg_u_ : O +}. + +notation > "𝕦_term 90 s p" non associative with precedence 45 for @{'upp $s $p}. +notation "𝕦 \sub term 90 s p" non associative with precedence 45 for @{'upp $s $p}. +notation > "𝕝_term 90 s p" non associative with precedence 45 for @{'low $s $p}. +notation "𝕝 \sub term 90 s p" non associative with precedence 45 for @{'low $s $p}. + +definition seg_u ≝ + λO:half_ordered_set.λs:segment O.λP: O → CProp. + wloss O ? (λl,u.P u) (seg_l_ ? s) (seg_u_ ? s). +definition seg_l ≝ + λO:half_ordered_set.λs:segment O.λP: O → CProp. + wloss O ? (λl,u.P u) (seg_u_ ? s) (seg_l_ ? s). + +interpretation "uppper" 'upp s P = (seg_u (os_l _) s P). +interpretation "lower" 'low s P = (seg_l (os_l _) s P). +interpretation "uppper dual" 'upp s P = (seg_l (os_r _) s P). +interpretation "lower dual" 'low s P = (seg_u (os_r _) s P). + +definition in_segment ≝ + λO:half_ordered_set.λs:segment O.λx:O. + wloss O ? (λp1,p2.p1 ∧ p2) (seg_u ? s (λu.u ≤≤ x)) (seg_l ? s (λl.x ≤≤ l)). + +notation "‡O" non associative with precedence 90 for @{'segment $O}. +interpretation "Ordered set sergment" 'segment x = (segment x). + +interpretation "Ordered set sergment in" 'mem x s = (in_segment _ s x). + +definition segment_ordered_set_carr ≝ + λO:half_ordered_set.λs:‡O.∃x.x ∈ s. +definition segment_ordered_set_exc ≝ + λO:half_ordered_set.λs:‡O. + λx,y:segment_ordered_set_carr O s.hos_excess_ O (\fst x) (\fst y). +lemma segment_ordered_set_corefl: + ∀O,s. coreflexive ? (wloss O ? (segment_ordered_set_exc O s)). +intros 3; cases x; cases (wloss_prop O); +generalize in match (hos_coreflexive O w); +rewrite < (H1 ? (segment_ordered_set_exc O s)); +rewrite < (H1 ? (hos_excess_ O)); intros; assumption; +qed. +lemma segment_ordered_set_cotrans : + ∀O,s. cotransitive ? (wloss O ? (segment_ordered_set_exc O s)). +intros 5 (O s x y z); cases x; cases y ; cases z; clear x y z; +generalize in match (hos_cotransitive O w w1 w2); +cases (wloss_prop O); +do 3 rewrite < (H3 ? (segment_ordered_set_exc O s)); +do 3 rewrite < (H3 ? (hos_excess_ O)); intros; apply H4; assumption; +qed. + +lemma half_segment_ordered_set: + ∀O:half_ordered_set.∀s:segment O.half_ordered_set. +intros (O a); constructor 1; +[ apply (segment_ordered_set_carr O a); +| apply (wloss O); +| apply (wloss_prop O); +| apply (segment_ordered_set_exc O a); +| apply (segment_ordered_set_corefl O a); +| apply (segment_ordered_set_cotrans ??); +] +qed. + +lemma segment_ordered_set: + ∀O:ordered_set.∀s:‡O.ordered_set. +intros (O s); +apply half2full; apply (half_segment_ordered_set (os_l O) s); +qed. + +notation "{[ term 19 s ]}" non associative with precedence 90 for @{'segset $s}. +interpretation "Ordered set segment" 'segset s = (segment_ordered_set _ s). + +(* test : + ∀O:ordered_set.∀s: segment (os_l O).∀x:O. + in_segment (os_l O) s x + = + in_segment (os_r O) s x. +intros; try reflexivity; +*) + +definition hint_sequence: + ∀C:ordered_set. + sequence (hos_carr (os_l C)) → sequence (Type_of_ordered_set C). +intros;assumption; +qed. + +definition hint_sequence1: + ∀C:ordered_set. + sequence (hos_carr (os_r C)) → sequence (Type_of_ordered_set_dual C). +intros;assumption; +qed. + +definition hint_sequence2: + ∀C:ordered_set. + sequence (Type_of_ordered_set C) → sequence (hos_carr (os_l C)). +intros;assumption; +qed. + +definition hint_sequence3: + ∀C:ordered_set. + sequence (Type_of_ordered_set_dual C) → sequence (hos_carr (os_r C)). +intros;assumption; +qed. + +coercion hint_sequence nocomposites. +coercion hint_sequence1 nocomposites. +coercion hint_sequence2 nocomposites. +coercion hint_sequence3 nocomposites. + +(* Lemma 2.9 - non easily dualizable *) + +lemma x2sx: + ∀O:half_ordered_set. + ∀s:segment O.∀x,y:half_segment_ordered_set ? s. + \fst x ≰≰ \fst y → x ≰≰ y. +intros 4; cases x; cases y; clear x y; simplify; unfold hos_excess; +whd in ⊢ (?→? (% ? ?) ? ? ? ?); simplify in ⊢ (?→%); +cases (wloss_prop O) (E E); do 2 rewrite < E; intros; assumption; +qed. + +lemma sx2x: + ∀O:half_ordered_set. + ∀s:segment O.∀x,y:half_segment_ordered_set ? s. + x ≰≰ y → \fst x ≰≰ \fst y. +intros 4; cases x; cases y; clear x y; simplify; unfold hos_excess; +whd in ⊢ (? (% ? ?) ? ? ? ? → ?); simplify in ⊢ (% → ?); +cases (wloss_prop O) (E E); do 2 rewrite < E; intros; assumption; +qed. + +lemma h_segment_preserves_supremum: + ∀O:half_ordered_set.∀s:segment O. + ∀a:sequence (half_segment_ordered_set ? s). + ∀x:half_segment_ordered_set ? s. + increasing ? ⌊n,\fst (a n)⌋ ∧ + supremum ? ⌊n,\fst (a n)⌋ (\fst x) → uparrow ? a x. +intros; split; cases H; clear H; +[1: intro n; lapply (H1 n) as K; clear H1 H2; + intro; apply K; clear K; apply (sx2x ???? H); +|2: cases H2; split; clear H2; + [1: intro n; lapply (H n) as K; intro W; apply K; + apply (sx2x ???? W); + |2: clear H1 H; intros (y0 Hy0); cases (H3 (\fst y0));[exists[apply w]] + [1: change in H with (\fst (a w) ≰≰ \fst y0); apply (x2sx ???? H); + |2: apply (sx2x ???? Hy0);]]] +qed. + +notation "'segment_preserves_supremum'" non associative with precedence 90 for @{'segment_preserves_supremum}. +notation "'segment_preserves_infimum'" non associative with precedence 90 for @{'segment_preserves_infimum}. + +interpretation "segment_preserves_supremum" 'segment_preserves_supremum = (h_segment_preserves_supremum (os_l _)). +interpretation "segment_preserves_infimum" 'segment_preserves_infimum = (h_segment_preserves_supremum (os_r _)). + +(* TEST, ma quanto godo! *) +lemma segment_preserves_infimum2: + ∀O:ordered_set.∀s:‡O.∀a:sequence {[s]}.∀x:{[s]}. + ⌊n,\fst (a n)⌋ is_decreasing ∧ + (\fst x) is_infimum ⌊n,\fst (a n)⌋ → a ↓ x. +intros; apply (segment_preserves_infimum s a x H); +qed. +*) + +(* Definition 2.10 *) +alias symbol "pi2" = "pair pi2". +alias symbol "pi1" = "pair pi1". +definition square_segment ≝ + λO:ordered_set.λa,b:O.λx: O squareO. + And4 (\fst x ≤ b) (a ≤ \fst x) (\snd x ≤ b) (a ≤ \snd x). + +definition convex ≝ + λO:ordered_set.λU:O squareO → Prop. + ∀p.U p → \fst p ≤ \snd p → ∀y. + square_segment O (\fst p) (\snd p) y → U y. + +(* Definition 2.11 *) +definition upper_located ≝ + λO:half_ordered_set.λa:sequence O.∀x,y:O. y ≰≰ x → + (∃i:nat.a i ≰≰ x) ∨ (∃b:O.y ≰≰ b ∧ ∀i:nat.a i ≤≤ b). + +notation < "s \nbsp 'is_upper_located'" non associative with precedence 45 + for @{'upper_located $s}. +notation > "s 'is_upper_located'" non associative with precedence 45 + for @{'upper_located $s}. +interpretation "Ordered set upper locatedness" 'upper_located s = + (upper_located (os_l _) s). + +notation < "s \nbsp 'is_lower_located'" non associative with precedence 45 + for @{'lower_located $s}. +notation > "s 'is_lower_located'" non associative with precedence 45 + for @{'lower_located $s}. +interpretation "Ordered set lower locatedness" 'lower_located s = + (upper_located (os_r _) s). + +(* Lemma 2.12 *) +lemma h_uparrow_upperlocated: + ∀C:half_ordered_set.∀a:sequence C.∀u:C.uparrow ? a u → upper_located ? a. +intros (C a u H); cases H (H2 H3); clear H; intros 3 (x y Hxy); +cases H3 (H4 H5); clear H3; cases (hos_cotransitive ??? u Hxy) (W W); +[2: cases (H5 ? W) (w Hw); left; exists [apply w] assumption; +|1: right; exists [apply u]; split; [apply W|apply H4]] +qed. + +notation "'uparrow_upperlocated'" non associative with precedence 90 for @{'uparrow_upperlocated}. +notation "'downarrow_lowerlocated'" non associative with precedence 90 for @{'downarrow_lowerlocated}. + +interpretation "uparrow_upperlocated" 'uparrow_upperlocated = (h_uparrow_upperlocated (os_l _)). +interpretation "downarrow_lowerlocated" 'downarrow_lowerlocated = (h_uparrow_upperlocated (os_r _)).