X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama%2Funiform.ma;h=759037124310076d813c711ea272eb323d2d6ffc;hb=6d27950e804ea499909ae0fabceea99f35d118e9;hp=a89a42ba81de31ba5d771c2378a923efad6b81c1;hpb=80ea6f314e89d9d280338c41860cb04949319629;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama/uniform.ma b/helm/software/matita/contribs/dama/dama/uniform.ma index a89a42ba8..759037124 100644 --- a/helm/software/matita/contribs/dama/dama/uniform.ma +++ b/helm/software/matita/contribs/dama/dama/uniform.ma @@ -15,24 +15,23 @@ include "supremum.ma". (* Definition 2.13 *) -alias symbol "square" = "bishop set square". alias symbol "pair" = "Pair construction". alias symbol "exists" = "exists". alias symbol "and" = "logical and". definition compose_bs_relations ≝ - λC:bishop_set.λU,V:C square → Prop. - λx:C square.∃y:C. U 〈\fst x,y〉 ∧ V 〈y,\snd x〉. + λC:bishop_set.λU,V:C squareB → Prop. + λx:C squareB.∃y:C. U 〈\fst x,y〉 ∧ V 〈y,\snd x〉. definition compose_os_relations ≝ - λC:ordered_set.λU,V:C square → Prop. - λx:C square.∃y:C. U 〈\fst x,y〉 ∧ V 〈y,\snd x〉. + λC:ordered_set.λU,V:C squareB → Prop. + λx:C squareB.∃y:C. U 〈\fst x,y〉 ∧ V 〈y,\snd x〉. interpretation "bishop set relations composition" 'compose a b = (compose_bs_relations _ a b). interpretation "ordered set relations composition" 'compose a b = (compose_os_relations _ a b). definition invert_bs_relation ≝ - λC:bishop_set.λU:C square → Prop. - λx:C square. U 〈\snd x,\fst x〉. + λC:bishop_set.λU:C squareB → Prop. + λx:C squareB. U 〈\snd x,\fst x〉. notation > "\inv" with precedence 60 for @{ 'invert_symbol }. interpretation "relation invertion" 'invert a = (invert_bs_relation _ a). @@ -46,14 +45,14 @@ alias symbol "and" (instance 16) = "constructive and". alias symbol "and" (instance 9) = "constructive and". record uniform_space : Type ≝ { us_carr:> bishop_set; - us_unifbase: (us_carr square → Prop) → CProp; - us_phi1: ∀U:us_carr square → Prop. us_unifbase U → - (λx:us_carr square.\fst x ≈ \snd x) ⊆ U; - us_phi2: ∀U,V:us_carr square → Prop. us_unifbase U → us_unifbase V → - ∃W:us_carr square → Prop.us_unifbase W ∧ (W ⊆ (λx.U x ∧ V x)); - us_phi3: ∀U:us_carr square → Prop. us_unifbase U → - ∃W:us_carr square → Prop.us_unifbase W ∧ (W ∘ W) ⊆ U; - us_phi4: ∀U:us_carr square → Prop. us_unifbase U → ∀x.(U x → (\inv U) x) ∧ ((\inv U) x → U x) + us_unifbase: (us_carr squareB → Prop) → CProp; + us_phi1: ∀U:us_carr squareB → Prop. us_unifbase U → + (λx:us_carr squareB.\fst x ≈ \snd x) ⊆ U; + us_phi2: ∀U,V:us_carr squareB → Prop. us_unifbase U → us_unifbase V → + ∃W:us_carr squareB → Prop.us_unifbase W ∧ (W ⊆ (λx.U x ∧ V x)); + us_phi3: ∀U:us_carr squareB → Prop. us_unifbase U → + ∃W:us_carr squareB → Prop.us_unifbase W ∧ (W ∘ W) ⊆ U; + us_phi4: ∀U:us_carr squareB → Prop. us_unifbase U → ∀x.(U x → (\inv U) x) ∧ ((\inv U) x → U x) }. (* Definition 2.14 *)