X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fdama%2Fdama_didactic%2Fex_seq.ma;h=53c8bf9cf0d6905b67043fecc0eee353acda27df;hb=700b170aa9b0377d33f1edd44de8d89129477fb8;hp=fcefda2448b1537a81b0c86e9a90f82127f364ef;hpb=d4302f43737034a69bd475e5f46e8d126229375e;p=helm.git diff --git a/helm/software/matita/contribs/dama/dama_didactic/ex_seq.ma b/helm/software/matita/contribs/dama/dama_didactic/ex_seq.ma index fcefda244..53c8bf9cf 100644 --- a/helm/software/matita/contribs/dama/dama_didactic/ex_seq.ma +++ b/helm/software/matita/contribs/dama/dama_didactic/ex_seq.ma @@ -34,7 +34,7 @@ lemma l1: monotone_not_increasing alpha. assume n:nat. we need to prove (alpha (S n) ≤ alpha n) or equivalently (Rdiv (alpha n) (S (S O)) ≤ alpha n). - by _ done. + done. qed. lemma l2: inf_bounded alpha. @@ -54,12 +54,12 @@ lemma l2: inf_bounded alpha. (* approssimiamo con questo *) we need to prove (R0 ≤ alpha O) or equivalently (R0 ≤ R1). - by _ done. + done. case S (m:nat). by induction hypothesis we know (R0 ≤ alpha m) (H). we need to prove (R0 ≤ alpha (S m)) or equivalently (R0 ≤ Rdiv (alpha m) (S (S O))). - by _ done. + done. qed. axiom xxx': @@ -68,15 +68,16 @@ axiom xxx': punto_fisso F l. theorem dimostrazione: tends_to alpha O. - by _ let l:R such that (tends_to alpha l) (H). + let l:R such that (tends_to alpha l) (H). (* unfold alpha in H. change in match alpha in H with (successione F O). check(xxx' F cont l H).*) - by (lim_punto_fisso F R1 cont l H) we proved (punto_fisso F l) (H2) +(* end auto($Revision: 8612 $) proof: TIME=0.01 SIZE=100 DEPTH=100 *) + using (lim_punto_fisso F R1 cont l H) we proved (punto_fisso F l) (H2) that is equivalent to (l = (Rdiv l (S (S O)))). - by _ we proved (tends_to alpha l = tends_to alpha O) (H4). + we proved (tends_to alpha l = tends_to alpha O) (H4). rewrite < H4. - by _ done. + done. qed. (******************************************************************************) @@ -95,15 +96,15 @@ lemma uno: ∀n. alpha2 n ≥ R1. alias num (instance 0) = "natural number". we need to prove (alpha2 0 ≥ R1) or equivalently ((S (S O)) ≥ R1). - by _ done. + done. case S (m:nat). by induction hypothesis we know (alpha2 m ≥ R1) (H). we need to prove (alpha2 (S m) ≥ R1) or equivalently (Rmult (alpha2 m) (alpha2 m) ≥ R1).letin xxx := (n ≤ n); - by _ we proved (R1 · R1 ≤ alpha2 m · alpha2 m) (H1). - by _ we proved (R1 · R1 = R1) (H2). + we proved (R1 · R1 ≤ alpha2 m · alpha2 m) (H1). + we proved (R1 · R1 = R1) (H2). rewrite < H2. - by _ done. + done. qed. lemma mono1: monotone_not_decreasing alpha2. @@ -112,7 +113,7 @@ lemma mono1: monotone_not_decreasing alpha2. assume n:nat. we need to prove (alpha2 n ≤ alpha2 (S n)) or equivalently (alpha2 n ≤ Rmult (alpha2 n) (alpha2 n)). - by _ done. + done. qed. (*