X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Fbin%2Ftheory_explorer.ml;h=82850e40d2581be9943818389e972d5aa561cf03;hb=7329247b6325d8890f13898c25e68255e843e498;hp=be1e107fb21081f8d62ea0bcc0bec192692f656f;hpb=99ca90bf28a25fcd1cd84596c37be43c97f74e6e;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/bin/theory_explorer.ml b/helm/software/matita/contribs/formal_topology/bin/theory_explorer.ml index be1e107fb..82850e40d 100644 --- a/helm/software/matita/contribs/formal_topology/bin/theory_explorer.ml +++ b/helm/software/matita/contribs/formal_topology/bin/theory_explorer.ml @@ -1,3 +1,11 @@ +type rel = Equal | SubsetEqual | SupersetEqual + +let string_of_rel = + function + Equal -> "=" + | SubsetEqual -> "⊆" + | SupersetEqual -> "⊇" + (* operator *) type op = I | C | M @@ -13,6 +21,8 @@ type compound_operator = op list let string_of_cop op = if op = [] then "id" else String.concat "" (List.map string_of_op op) +let dot_of_cop op = "\"" ^ string_of_cop op ^ "\"" + let rec matita_of_cop v = function | [] -> v @@ -26,6 +36,9 @@ type equivalence_class = compound_operator * compound_operator list * equivalence_class list ref * equivalence_class list ref +let (===) (repr,_,_,_) (repr',_,_,_) = repr = repr';; +let (<=>) (repr,_,_,_) (repr',_,_,_) = repr <> repr';; + let string_of_equivalence_class (repr,others,leq,_) = String.concat " = " (List.map string_of_cop (repr::others)) ^ (if !leq <> [] then @@ -33,46 +46,84 @@ let string_of_equivalence_class (repr,others,leq,_) = String.concat "\n" (List.map (function (repr',_,_,_) -> - string_of_cop repr ^ " <= " ^ string_of_cop repr') !leq) + string_of_cop repr ^ " ⊆ " ^ string_of_cop repr') !leq) else "") let dot_of_equivalence_class (repr,others,leq,_) = (if others <> [] then let eq = String.concat " = " (List.map string_of_cop (repr::others)) in - string_of_cop repr ^ "[label=\"" ^ eq ^ "\"];\n" - else "") ^ + dot_of_cop repr ^ "[label=\"" ^ eq ^ "\"];" ^ + if !leq = [] then "" else "\n" + else if !leq = [] then + dot_of_cop repr ^ ";" + else + "") ^ String.concat "\n" (List.map (function (repr',_,_,_) -> - string_of_cop repr' ^ " -> " ^ string_of_cop repr ^ ";") !leq) + dot_of_cop repr' ^ " -> " ^ dot_of_cop repr ^ ";") !leq) -(* set of equivalence classes *) -type set = equivalence_class list +(* set of equivalence classes, infima, suprema *) +type set = + equivalence_class list * equivalence_class list * equivalence_class list -let string_of_set s = +let string_of_set (s,_,_) = String.concat "\n" (List.map string_of_equivalence_class s) -let ps_of_set ?processing s = +let ps_of_set (to_be_considered,under_consideration,news) ?processing (s,inf,sup) = let ch = open_out "xxx.dot" in output_string ch "digraph G {\n"; + (match under_consideration with + None -> () + | Some repr -> + output_string ch (dot_of_cop repr ^ " [color=yellow];")); + List.iter + (function (repr,_,_,_) -> + if List.exists (function (repr',_,_,_) -> repr=repr') sup then + output_string ch (dot_of_cop repr ^ " [shape=Mdiamond];") + else + output_string ch (dot_of_cop repr ^ " [shape=diamond];") + ) inf ; + List.iter + (function (repr,_,_,_) -> + if not (List.exists (function (repr',_,_,_) -> repr=repr') inf) then + output_string ch (dot_of_cop repr ^ " [shape=polygon];") + ) sup ; + List.iter + (function repr -> output_string ch (dot_of_cop repr ^ " [color=green];") + ) to_be_considered ; + List.iter + (function repr -> output_string ch (dot_of_cop repr ^ " [color=navy];") + ) news ; output_string ch (String.concat "\n" (List.map dot_of_equivalence_class s)); + output_string ch "\n"; (match processing with None -> () | Some (repr,rel,repr') -> - output_string ch - (string_of_cop repr' ^ " -> " ^ string_of_cop repr ^ - " [" ^ - (if rel="=" then "arrowhead=none " else "") ^ - "style=dashed];\n")); + output_string ch (dot_of_cop repr ^ " [color=red];"); + let repr,repr' = + match rel with + SupersetEqual -> repr',repr + | Equal + | SubsetEqual -> repr,repr' + in + output_string ch + (dot_of_cop repr' ^ " -> " ^ dot_of_cop repr ^ + " [" ^ + (match rel with Equal -> "arrowhead=none " | _ -> "") ^ + "style=dashed];\n")); output_string ch "}\n"; close_out ch; - ignore (Unix.system "dot -Tps xxx.dot > xxx.ps") + (*ignore (Unix.system "tred xxx.dot > yyy.dot && dot -Tps yyy.dot > xxx.ps")*) + ignore (Unix.system "cp xxx.ps xxx_old.ps && dot -Tps xxx.dot > xxx.ps"); + (*ignore (read_line ())*) +;; -let test set rel candidate repr = - ps_of_set ~processing:(candidate,rel,repr) set; +let test to_be_considered_and_now ((s,_,_) as set) rel candidate repr = + ps_of_set to_be_considered_and_now ~processing:(candidate,rel,repr) set; print_string - (string_of_cop candidate ^ " " ^ rel ^ " " ^ string_of_cop repr ^ "? "); + (string_of_cop candidate ^ " " ^ string_of_rel rel ^ " " ^ string_of_cop repr ^ "? "); flush stdout; assert (Unix.system "cp formal_topology.ma xxx.ma" = Unix.WEXITED 0); let ch = open_out_gen [Open_append] 0 "xxx.ma" in @@ -95,101 +146,252 @@ let test set rel candidate repr = ": \\forall A." ^ matita_of_cop "A" repr ^ " ⊆ " ^ matita_of_cop "A" repr' ^ ".\n"); ) !leq; - ) set; + ) s; + let candidate',rel',repr' = + match rel with + SupersetEqual -> repr,SubsetEqual,candidate + | Equal + | SubsetEqual -> candidate,rel,repr + in output_string ch - ("theorem foo: \\forall A." ^ matita_of_cop "A" candidate ^ " " ^ rel ^ " " ^ - matita_of_cop "A" repr ^ ". intros; auto size=6 depth=4. qed.\n"); + ("theorem foo: \\forall A." ^ matita_of_cop "A" candidate' ^ + " " ^ string_of_rel rel' ^ " " ^ + matita_of_cop "A" repr' ^ ". intros; auto size=6 depth=4. qed.\n"); close_out ch; let res = - Unix.system "../../../matitac.opt xxx.ma >> log 2>&1" = Unix.WEXITED 0 + (*Unix.system "../../../matitac.opt xxx.ma >> log 2>&1" = Unix.WEXITED 0*) + Unix.system "../../../matitac.opt xxx.ma > /dev/null 2>&1" = Unix.WEXITED 0 in print_endline (if res then "y" else "n"); res -let normalize candidate set = - let rec aux = +let remove node = List.filter (fun node' -> node <=> node');; + +let add_leq_arc ((_,_,leq,_) as node) ((_,_,_,geq') as node') = + leq := node' :: !leq; + geq' := node :: !geq' +;; + +let add_geq_arc ((_,_,_,geq) as node) ((_,_,leq',_) as node') = + geq := node' :: !geq; + leq' := node :: !leq' +;; + +let remove_leq_arc ((_,_,leq,_) as node) ((_,_,_,geq') as node') = + leq := remove node' !leq; + geq' := remove node !geq' +;; + +let remove_geq_arc ((_,_,_,geq) as node) ((_,_,leq',_) as node') = + geq := remove node' !geq; + leq' := remove node !leq' +;; + +let leq_transitive_closure node node' = + add_leq_arc node node'; + let rec remove_transitive_arcs ((_,_,_,geq) as node) (_,_,leq',_) = + let rec remove_arcs_to_ascendents = + function + [] -> () + | (_,_,leq,_) as node'::tl -> + remove_leq_arc node node'; + remove_arcs_to_ascendents (!leq@tl) + in + remove_arcs_to_ascendents !leq'; + List.iter (function son -> remove_transitive_arcs son node) !geq + in + remove_transitive_arcs node node' +;; + +let geq_transitive_closure node node' = + add_geq_arc node node'; + let rec remove_transitive_arcs ((_,_,leq,_) as node) (_,_,_,geq') = + let rec remove_arcs_to_descendents = + function + [] -> () + | (_,_,_,geq) as node'::tl -> + remove_geq_arc node node'; + remove_arcs_to_descendents (!geq@tl) + in + remove_arcs_to_descendents !geq'; + List.iter (function father -> remove_transitive_arcs father node) !leq + in + remove_transitive_arcs node node' +;; + +let (@@) l1 n = if List.exists (function n' -> n===n') l1 then l1 else l1@[n] + +let rec leq_reachable node = + function + [] -> false + | node'::_ when node === node' -> true + | (_,_,leq,_)::tl -> leq_reachable node (!leq@tl) +;; + +let rec geq_reachable node = + function + [] -> false + | node'::_ when node === node' -> true + | (_,_,_,geq)::tl -> geq_reachable node (!geq@tl) +;; + +let locate_using_leq to_be_considered_and_now ((repr,_,leq,_) as node) + set start += + let rec aux ((nodes,inf,sup) as set) = function - [] -> raise Not_found - | (repr,others,leq,geq) as eqclass :: tl -> - if test set "=" candidate repr then - (repr,others@[candidate],leq,geq)::tl + [] -> set + | (repr',_,_,geq') as node' :: tl -> + if repr=repr' then aux set (!geq'@tl) + else if leq_reachable node' !leq then + aux set tl + else if test to_be_considered_and_now set SubsetEqual repr repr' then + begin + let sup = remove node sup in + let inf = if !geq' = [] then (remove node' inf)@@node else inf in + leq_transitive_closure node node'; + aux (nodes,inf,sup) (!geq'@tl) + end else - eqclass::(aux tl) + aux set tl in - aux set + aux set start ;; -let locate ((repr,_,leq,geq) as node) set = - let rec aux = +exception SameEquivalenceClass of equivalence_class * equivalence_class;; + +let locate_using_geq to_be_considered_and_now ((repr,_,leq,geq) as node) + set start += + let rec aux ((nodes,inf,sup) as set) = function - [] -> () - | (repr',_,leq',geq') as node' :: tl -> - if repr = repr' then () - else if test set "⊆" repr repr' then + [] -> set + | (repr',_,leq',_) as node' :: tl -> + if repr=repr' then aux set (!leq'@tl) + else if geq_reachable node' !geq then + aux set tl + else if test to_be_considered_and_now set SupersetEqual repr repr' then begin - leq := node' :: !leq; - geq' := node :: !geq' + if List.exists (function n -> n===node') !leq then + (* We have found two equal nodes! *) + raise (SameEquivalenceClass (node,node')) + else + begin + let inf = remove node inf in + let sup = if !leq' = [] then (remove node' sup)@@node else sup in + geq_transitive_closure node node'; + aux (nodes,inf,sup) (!leq'@tl) + end end - else if test set "⊆" repr' repr then - begin - geq := node' :: !geq; - leq' := node :: !leq' - end ; - aux tl + else + aux set tl in - aux set + aux set start ;; -let analyze_one i repr hecandidate (news,set) = +let analyze_one to_be_considered repr hecandidate (news,((nodes,inf,sup) as set)) = +if not (List.for_all (fun ((_,_,_,geq) as node) -> !geq = [] && let rec check_sups = function [] -> true | (_,_,leq,_) as node::tl -> if !leq = [] then List.exists (fun n -> n===node) sup && check_sups tl else check_sups (!leq@tl) in check_sups [node]) inf) then (ps_of_set ([],None,[]) set; assert false); +if not (List.for_all (fun ((_,_,leq,_) as node) -> !leq = [] && let rec check_infs = function [] -> true | (_,_,_,geq) as node::tl -> if !geq = [] then List.exists (fun n -> n===node) inf && check_infs tl else check_infs (!geq@tl) in check_infs [node]) sup) then (ps_of_set ([],None,[]) set; assert false); let candidate = hecandidate::repr in - if List.length (List.filter ((=) M) candidate) > i then + if List.length (List.filter ((=) M) candidate) > 1 then news,set else try - let set = normalize candidate set in - news,set + let leq = ref [] in + let geq = ref [] in + let node = candidate,[],leq,geq in + let nodes = nodes@[node] in + let set = nodes,inf@[node],sup@[node] in + let start_inf,start_sup = + let repr_node = + match List.filter (fun (repr',_,_,_) -> repr=repr') nodes with + [node] -> node + | _ -> assert false + in +inf,sup(* + match hecandidate with + I -> inf,[repr_node] + | C -> [repr_node],sup + | M -> inf,sup +*) + in + let set = + locate_using_leq (to_be_considered,Some repr,news) node set start_sup in +( +let _,inf,sup = set in +if not (List.for_all (fun ((_,_,_,geq) as node) -> !geq = [] && let rec check_sups = function [] -> true | (_,_,leq,_) as node::tl -> if !leq = [] then List.exists (fun n -> n===node) sup && check_sups tl else check_sups (!leq@tl) in check_sups [node]) inf) then (ps_of_set ([],None,[]) set; assert false); +if not (List.for_all (fun ((_,_,leq,_) as node) -> !leq = [] && let rec check_infs = function [] -> true | (_,_,_,geq) as node::tl -> if !geq = [] then List.exists (fun n -> n===node) inf && check_infs tl else check_infs (!geq@tl) in check_infs [node]) sup) then (ps_of_set ([],None,[]) set; assert false); +); + let set = + locate_using_geq (to_be_considered,Some repr,news) node set start_inf + in +( +let _,inf,sup = set in +if not (List.for_all (fun ((_,_,_,geq) as node) -> !geq = [] && let rec check_sups = function [] -> true | (_,_,leq,_) as node::tl -> if !leq = [] then List.exists (fun n -> n===node) sup && check_sups tl else check_sups (!leq@tl) in check_sups [node]) inf) then (ps_of_set ([],None,[]) set; assert false); +if not (List.for_all (fun ((_,_,leq,_) as node) -> !leq = [] && let rec check_infs = function [] -> true | (_,_,_,geq) as node::tl -> if !geq = [] then List.exists (fun n -> n===node) inf && check_infs tl else check_infs (!geq@tl) in check_infs [node]) sup) then (ps_of_set ([],None,[]) set; assert false); +); + news@[candidate],set with - Not_found -> - let leq = ref [] in - let geq = ref [] in - let node = candidate,[],leq,geq in - let set = node::set in - locate node set; - candidate::news,set + SameEquivalenceClass ((_,_,leq_d,geq_d) as node_to_be_deleted,node') -> + let rec clean = + function + [] -> [] + | (repr',others,leq,geq) as node::tl -> + leq := + List.fold_right + (fun node l -> + if node_to_be_deleted <=> node then + node::l + else + !leq_d@l + ) !leq []; + geq := + List.fold_right + (fun node l -> + if node_to_be_deleted <=> node then + node::l + else + !geq_d@l + ) !geq []; + if node===node' then + (repr',others@[candidate],leq,geq)::clean tl + else + node::clean tl + in + let nodes = clean nodes in + news,(nodes,inf,sup) ;; -let rec explore i j set news = +let rec explore i (set:set) news = let rec aux news set = function [] -> news,set | repr::tl -> let news,set = - List.fold_right (analyze_one i repr) [I;C;M] (news,set) + List.fold_right (analyze_one tl repr) [I;C;M] (news,set) in aux news set tl in let news,set = aux [] set news in if news = [] then begin - print_endline ("PUNTO FISSO RAGGIUNTO! i=" ^ string_of_int i ^ " j=" ^ string_of_int j); + print_endline ("PUNTO FISSO RAGGIUNTO! i=" ^ string_of_int i); print_endline (string_of_set set ^ "\n----------------"); - if i < 2 then - explore (i+1) 1 set (List.map (function (repr,_,_,_) -> repr) set) - else - ps_of_set set + ps_of_set ([],None,[]) set end else begin - print_endline ("NUOVA ITERAZIONE, i=" ^ string_of_int i ^ " j=" ^ string_of_int j); + print_endline ("NUOVA ITERAZIONE, i=" ^ string_of_int i); print_endline (string_of_set set ^ "\n----------------"); - explore i (j+1) set news + explore (i+1) set news end in let id = [] in - let set = [id,[],ref [], ref []] in + let id_node = id,[],ref [], ref [] in + let set = [id_node],[id_node],[id_node] in print_endline ("PRIMA ITERAZIONE, i=0, j=0"); print_endline (string_of_set set ^ "\n----------------"); - ignore (Unix.system "rm -f log"); - ps_of_set set; - explore 0 1 set [id] + (*ignore (Unix.system "rm -f log");*) + ps_of_set ([id],None,[]) set; + explore 1 set [id] ;;