X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fbasic_pairs_to_o-basic_pairs.ma;h=d8813fdc1b1154c37458065c9f548d4ddddb3fea;hb=3e094922bf3fec6975fdbe6feceb509eaafe0563;hp=2aec4f7e8e897300c28e6c2c142e521a91179c6c;hpb=b6e187ff7580c3dbec8bf467915d0ccd0dfd65a8;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/basic_pairs_to_o-basic_pairs.ma b/helm/software/matita/contribs/formal_topology/overlap/basic_pairs_to_o-basic_pairs.ma index 2aec4f7e8..d8813fdc1 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/basic_pairs_to_o-basic_pairs.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/basic_pairs_to_o-basic_pairs.ma @@ -20,9 +20,9 @@ include "relations_to_o-algebra.ma". definition o_basic_pair_of_basic_pair: basic_pair → Obasic_pair. intro b; constructor 1; - [ apply (map_objs2 ?? SUBSETS' (concr b)); - | apply (map_objs2 ?? SUBSETS' (form b)); - | apply (map_arrows2 ?? SUBSETS' (concr b) (form b) (rel b)); ] + [ apply (map_objs2 ?? POW (concr b)); + | apply (map_objs2 ?? POW (form b)); + | apply (map_arrows2 ?? POW (concr b) (form b) (rel b)); ] qed. definition o_relation_pair_of_relation_pair: @@ -30,12 +30,12 @@ definition o_relation_pair_of_relation_pair: Orelation_pair (o_basic_pair_of_basic_pair BP1) (o_basic_pair_of_basic_pair BP2). intros; constructor 1; - [ apply (map_arrows2 ?? SUBSETS' (concr BP1) (concr BP2) (r \sub \c)); - | apply (map_arrows2 ?? SUBSETS' (form BP1) (form BP2) (r \sub \f)); - | apply (.= (respects_comp2 ?? SUBSETS' (concr BP1) (concr BP2) (form BP2) r\sub\c (⊩\sub BP2) )^-1); - cut (⊩ \sub BP2∘r \sub \c = r\sub\f ∘ ⊩ \sub BP1) as H; + [ apply (map_arrows2 ?? POW (concr BP1) (concr BP2) (r \sub \c)); + | apply (map_arrows2 ?? POW (form BP1) (form BP2) (r \sub \f)); + | apply (.= (respects_comp2 ?? POW (concr BP1) (concr BP2) (form BP2) r\sub\c (⊩\sub BP2) )^-1); + cut ( ⊩ \sub BP2 ∘ r \sub \c =_12 r\sub\f ∘ ⊩ \sub BP1) as H; [ apply (.= †H); - apply (respects_comp2 ?? SUBSETS' (concr BP1) (form BP1) (form BP2) (⊩\sub BP1) r\sub\f); + apply (respects_comp2 ?? POW (concr BP1) (form BP1) (form BP2) (⊩\sub BP1) r\sub\f); | apply commute;]] qed. @@ -52,9 +52,9 @@ definition BP_to_OBP: carr3 (arrows3 CAT2 (category2_of_category1 BP) OBP). | change in match or_f_star_ with (λq,w,x.fun12 ?? (or_f_star q w) x);] simplify; apply (prop12); - apply (.= (respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) (a\sub\c) (⊩\sub T))^-1); + apply (.= (respects_comp2 ?? POW (concr S) (concr T) (form T) (a\sub\c) (⊩\sub T))^-1); apply sym2; - apply (.= (respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) (b\sub\c) (⊩\sub T))^-1); + apply (.= (respects_comp2 ?? POW (concr S) (concr T) (form T) (b\sub\c) (⊩\sub T))^-1); apply sym2; apply prop12; apply Eab; @@ -67,7 +67,7 @@ definition BP_to_OBP: carr3 (arrows3 CAT2 (category2_of_category1 BP) OBP). simplify; apply prop12; apply prop22;[2,4,6,8: apply rule #;] - apply (respects_id2 ?? SUBSETS' (concr o)); + apply (respects_id2 ?? POW (concr o)); | simplify; intros; whd; split; [ change in match or_f_minus_star_ with (λq,w,x.fun12 ?? (or_f_minus_star q w) x); | change in match or_f_minus_ with (λq,w,x.fun12 ?? (or_f_minus q w) x); @@ -76,33 +76,33 @@ definition BP_to_OBP: carr3 (arrows3 CAT2 (category2_of_category1 BP) OBP). simplify; apply prop12; apply prop22;[2,4,6,8: apply rule #;] - apply (respects_comp2 ?? SUBSETS' (concr o1) (concr o2) (concr o3) f1\sub\c f2\sub\c);] + apply (respects_comp2 ?? POW (concr o1) (concr o2) (concr o3) f1\sub\c f2\sub\c);] qed. theorem BP_to_OBP_faithful: ∀S,T.∀f,g:arrows2 (category2_of_category1 BP) S T. map_arrows2 ?? BP_to_OBP ?? f = map_arrows2 ?? BP_to_OBP ?? g → f=g. intros; change with ( (⊩) ∘ f \sub \c = (⊩) ∘ g \sub \c); - apply (SUBSETS_faithful); - apply (.= respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) f \sub \c (⊩ \sub T)); + apply (POW_faithful); + apply (.= respects_comp2 ?? POW (concr S) (concr T) (form T) f \sub \c (⊩ \sub T)); apply sym2; - apply (.= respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) g \sub \c (⊩ \sub T)); + apply (.= respects_comp2 ?? POW (concr S) (concr T) (form T) g \sub \c (⊩ \sub T)); apply sym2; apply e; qed. theorem BP_to_OBP_full: ∀S,T.∀f. exT22 ? (λg. map_arrows2 ?? BP_to_OBP S T g = f). intros; - cases (SUBSETS_full (concr S) (concr T) (Oconcr_rel ?? f)) (gc Hgc); - cases (SUBSETS_full (form S) (form T) (Oform_rel ?? f)) (gf Hgf); + cases (POW_full (concr S) (concr T) (Oconcr_rel ?? f)) (gc Hgc); + cases (POW_full (form S) (form T) (Oform_rel ?? f)) (gf Hgf); exists[ constructor 1; [apply gc|apply gf] - apply (SUBSETS_faithful); - apply (let xxxx ≝SUBSETS' in .= respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) gc (rel T)); + apply (POW_faithful); + apply (let xxxx ≝POW in .= respects_comp2 ?? POW (concr S) (concr T) (form T) gc (rel T)); apply rule (.= Hgc‡#); apply (.= Ocommute ?? f); apply (.= #‡Hgf^-1); - apply (let xxxx ≝SUBSETS' in (respects_comp2 ?? SUBSETS' (concr S) (form S) (form T) (rel S) gf)^-1)] + apply (let xxxx ≝POW in (respects_comp2 ?? POW (concr S) (form S) (form T) (rel S) gf)^-1)] split; [ change in match or_f_minus_star_ with (λq,w,x.fun12 ?? (or_f_minus_star q w) x); | change in match or_f_minus_ with (λq,w,x.fun12 ?? (or_f_minus q w) x);