X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fcategories.ma;h=d83fd031914b681514986efb963be58c9e708373;hb=3e51297756e2c2422db7e35ca03af7123ff2498d;hp=5afda73d99865ae143aa257d93a1e4e006996dc4;hpb=3d7b244a79a1c57d3355deb2f9a70764cde077b9;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/categories.ma b/helm/software/matita/contribs/formal_topology/overlap/categories.ma index 5afda73d9..d83fd0319 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/categories.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/categories.ma @@ -12,34 +12,7 @@ (* *) (**************************************************************************) -include "logic/cprop_connectives.ma". - -definition Type0 := Type. -definition Type1 := Type. -definition Type2 := Type. -definition Type3 := Type. -definition Type0_lt_Type1 := (Type0 : Type1). -definition Type1_lt_Type2 := (Type1 : Type2). -definition Type2_lt_Type3 := (Type2 : Type3). - -definition Type_OF_Type0: Type0 → Type := λx.x. -definition Type_OF_Type1: Type1 → Type := λx.x. -definition Type_OF_Type2: Type2 → Type := λx.x. -definition Type_OF_Type3: Type3 → Type := λx.x. -coercion Type_OF_Type0. -coercion Type_OF_Type1. -coercion Type_OF_Type2. -coercion Type_OF_Type3. - -definition CProp0 := CProp. -definition CProp1 := CProp. -definition CProp2 := CProp. -definition CProp0_lt_CProp1 := (CProp0 : CProp1). -definition CProp1_lt_CProp2 := (CProp1 : CProp2). - -definition CProp_OF_CProp0: CProp0 → CProp := λx.x. -definition CProp_OF_CProp1: CProp1 → CProp := λx.x. -definition CProp_OF_CProp2: CProp2 → CProp := λx.x. +include "cprop_connectives.ma". record equivalence_relation (A:Type0) : Type1 ≝ { eq_rel:2> A → A → CProp0; @@ -53,11 +26,11 @@ record setoid : Type1 ≝ eq: equivalence_relation carr }. -definition reflexive1 ≝ λA:Type1.λR:A→A→CProp1.∀x:A.R x x. -definition symmetric1 ≝ λC:Type1.λlt:C→C→CProp1. ∀x,y:C.lt x y → lt y x. -definition transitive1 ≝ λA:Type1.λR:A→A→CProp1.∀x,y,z:A.R x y → R y z → R x z. +definition reflexive1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λA:Type1.λR:A→A→CProp1.∀x:A.R x x. +definition symmetric1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λC:Type1.λlt:C→C→CProp1. ∀x,y:C.lt x y → lt y x. +definition transitive1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λA:Type1.λR:A→A→CProp1.∀x,y,z:A.R x y → R y z → R x z. -record equivalence_relation1 (A:Type1) : Type1 ≝ +record equivalence_relation1 (A:Type1) : Type2 ≝ { eq_rel1:2> A → A → CProp1; refl1: reflexive1 ? eq_rel1; sym1: symmetric1 ? eq_rel1; @@ -81,14 +54,13 @@ definition setoid1_of_setoid: setoid → setoid1. | apply (trans s)]] qed. -(* questa coercion e' necessaria per problemi di unificazione *) coercion setoid1_of_setoid. -definition reflexive2 ≝ λA:Type2.λR:A→A→CProp2.∀x:A.R x x. -definition symmetric2 ≝ λC:Type2.λlt:C→C→CProp2. ∀x,y:C.lt x y → lt y x. -definition transitive2 ≝ λA:Type2.λR:A→A→CProp2.∀x,y,z:A.R x y → R y z → R x z. +definition reflexive2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λA:Type2.λR:A→A→CProp2.∀x:A.R x x. +definition symmetric2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λC:Type2.λlt:C→C→CProp2. ∀x,y:C.lt x y → lt y x. +definition transitive2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λA:Type2.λR:A→A→CProp2.∀x,y,z:A.R x y → R y z → R x z. -record equivalence_relation2 (A:Type2) : Type2 ≝ +record equivalence_relation2 (A:Type2) : Type3 ≝ { eq_rel2:2> A → A → CProp2; refl2: reflexive2 ? eq_rel2; sym2: symmetric2 ? eq_rel2; @@ -100,23 +72,19 @@ record setoid2: Type3 ≝ eq2: equivalence_relation2 carr2 }. -(* -definition Leibniz: Type → setoid. +definition setoid2_of_setoid1: setoid1 → setoid2. intro; constructor 1; - [ apply T + [ apply (carr1 s) | constructor 1; - [ apply (λx,y:T.cic:/matita/logic/equality/eq.ind#xpointer(1/1) ? x y) - | alias id "refl_eq" = "cic:/matita/logic/equality/eq.ind#xpointer(1/1/1)". - apply refl_eq - | alias id "sym_eq" = "cic:/matita/logic/equality/sym_eq.con". - apply sym_eq - | alias id "trans_eq" = "cic:/matita/logic/equality/trans_eq.con". - apply trans_eq ]] + [ apply (eq_rel1 s); + apply (eq1 s) + | apply (refl1 s) + | apply (sym1 s) + | apply (trans1 s)]] qed. -coercion Leibniz. -*) +coercion setoid2_of_setoid1. interpretation "setoid2 eq" 'eq x y = (eq_rel2 _ (eq2 _) x y). interpretation "setoid1 eq" 'eq x y = (eq_rel1 _ (eq1 _) x y). @@ -167,6 +135,7 @@ interpretation "prop11" 'prop1 c = (prop11 _____ c). interpretation "prop12" 'prop1 c = (prop12 _____ c). interpretation "prop2" 'prop2 l r = (prop2 ________ l r). interpretation "prop21" 'prop2 l r = (prop21 ________ l r). +interpretation "prop22" 'prop2 l r = (prop22 ________ l r). interpretation "refl" 'refl = (refl ___). interpretation "refl1" 'refl = (refl1 ___). interpretation "refl2" 'refl = (refl2 ___). @@ -177,25 +146,26 @@ definition CPROP: setoid1. | constructor 1; [ apply Iff | intros 1; split; intro; assumption - | intros 3; cases H; split; assumption - | intros 5; cases H; cases H1; split; intro; - [ apply (H4 (H2 x1)) | apply (H3 (H5 z1))]]] + | intros 3; cases i; split; assumption + | intros 5; cases i; cases i1; split; intro; + [ apply (f2 (f x1)) | apply (f1 (f3 z1))]]] qed. -definition if': ∀A,B:CPROP. A = B → A → B. - intros; apply (if ?? e); assumption. +alias symbol "eq" = "setoid1 eq". +definition fi': ∀A,B:CPROP. A = B → B → A. + intros; apply (fi ?? e); assumption. qed. -notation ". r" with precedence 50 for @{'if $r}. -interpretation "if" 'if r = (if' __ r). +notation ". r" with precedence 50 for @{'fi $r}. +interpretation "fi" 'fi r = (fi' __ r). definition and_morphism: binary_morphism1 CPROP CPROP CPROP. constructor 1; [ apply And - | intros; split; intro; cases H; split; - [ apply (if ?? e a1) + | intros; split; intro; cases a1; split; + [ apply (if ?? e a2) | apply (if ?? e1 b1) - | apply (fi ?? e a1) + | apply (fi ?? e a2) | apply (fi ?? e1 b1)]] qed. @@ -204,7 +174,7 @@ interpretation "and_morphism" 'and a b = (fun21 ___ and_morphism a b). definition or_morphism: binary_morphism1 CPROP CPROP CPROP. constructor 1; [ apply Or - | intros; split; intro; cases H; [1,3:left |2,4: right] + | intros; split; intro; cases o; [1,3:left |2,4: right] [ apply (if ?? e a1) | apply (fi ?? e a1) | apply (if ?? e1 b1) @@ -217,25 +187,10 @@ definition if_morphism: binary_morphism1 CPROP CPROP CPROP. constructor 1; [ apply (λA,B. A → B) | intros; split; intros; - [ apply (if ?? e1); apply H; apply (fi ?? e); assumption - | apply (fi ?? e1); apply H; apply (if ?? e); assumption]] + [ apply (if ?? e1); apply f; apply (fi ?? e); assumption + | apply (fi ?? e1); apply f; apply (if ?? e); assumption]] qed. -(* -definition eq_morphism: ∀S:setoid. binary_morphism S S CPROP. - intro; - constructor 1; - [ apply (eq_rel ? (eq S)) - | intros; split; intro; - [ apply (.= H \sup -1); - apply (.= H2); - assumption - | apply (.= H); - apply (.= H2); - apply (H1 \sup -1)]] -qed. -*) - record category : Type1 ≝ { objs:> Type0; arrows: objs → objs → setoid; @@ -270,27 +225,23 @@ record category2 : Type3 ≝ }. notation "'ASSOC'" with precedence 90 for @{'assoc}. -notation "'ASSOC1'" with precedence 90 for @{'assoc1}. -notation "'ASSOC2'" with precedence 90 for @{'assoc2}. -interpretation "category1 composition" 'compose x y = (fun22 ___ (comp2 ____) y x). -interpretation "category1 assoc" 'assoc1 = (comp_assoc2 ________). +interpretation "category2 composition" 'compose x y = (fun22 ___ (comp2 ____) y x). +interpretation "category2 assoc" 'assoc = (comp_assoc2 ________). interpretation "category1 composition" 'compose x y = (fun21 ___ (comp1 ____) y x). -interpretation "category1 assoc" 'assoc1 = (comp_assoc1 ________). +interpretation "category1 assoc" 'assoc = (comp_assoc1 ________). interpretation "category composition" 'compose x y = (fun2 ___ (comp ____) y x). interpretation "category assoc" 'assoc = (comp_assoc ________). -(* bug grande come una casa? - Ma come fa a passare la quantificazione larga??? *) definition unary_morphism_setoid: setoid → setoid → setoid. intros; constructor 1; [ apply (unary_morphism s s1); | constructor 1; - [ intros (f g); apply (∀a:s. f a = g a); + [ intros (f g); apply (∀a:s. eq ? (f a) (g a)); | intros 1; simplify; intros; apply refl; - | simplify; intros; apply sym; apply H; - | simplify; intros; apply trans; [2: apply H; | skip | apply H1]]] + | simplify; intros; apply sym; apply f; + | simplify; intros; apply trans; [2: apply f; | skip | apply f1]]] qed. definition SET: category1. @@ -313,33 +264,20 @@ definition setoid_of_SET: objs1 SET → setoid. intros; apply o; qed. coercion setoid_of_SET. -definition setoid1_of_SET: SET → setoid1. - intro; whd in t; apply setoid1_of_setoid; apply t. -qed. -coercion setoid1_of_SET. - -definition eq': ∀w:SET.equivalence_relation ? := λw.eq w. - -definition prop1_SET : - ∀A,B:SET.∀w:arrows1 SET A B.∀a,b:Type_OF_objs1 A.eq' ? a b→eq' ? (w a) (w b). -intros; apply (prop1 A B w a b e); -qed. - - -interpretation "SET dagger" 'prop1 h = (prop1_SET _ _ _ _ _ h). notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }. interpretation "unary morphism" 'Imply a b = (arrows1 SET a b). -interpretation "SET eq" 'eq x y = (eq_rel _ (eq' _) x y). -definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid2. +definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid1. intros; constructor 1; [ apply (unary_morphism1 s s1); | constructor 1; - [ intros (f g); apply (∀a: carr1 s. f a = g a); + [ intros (f g); + alias symbol "eq" = "setoid1 eq". + apply (∀a: carr1 s. f a = g a); | intros 1; simplify; intros; apply refl1; - | simplify; intros; apply sym1; apply H; - | simplify; intros; apply trans1; [2: apply H; | skip | apply H1]]] + | simplify; intros; apply sym1; apply f; + | simplify; intros; apply trans1; [2: apply f; | skip | apply f1]]] qed. definition SET1: category2. @@ -362,15 +300,29 @@ definition setoid1_OF_SET1: objs2 SET1 → setoid1. intros; apply o; qed. coercion setoid1_OF_SET1. + +definition setoid2_OF_category2: Type_OF_category2 SET1 → setoid2. + intro; apply (setoid2_of_setoid1 t); qed. +coercion setoid2_OF_category2. -definition eq'': ∀w:SET1.equivalence_relation1 ? := λw.eq1 w. +definition objs2_OF_category1: Type_OF_category1 SET → objs2 SET1. + intro; apply (setoid1_of_setoid t); qed. +coercion objs2_OF_category1. -definition prop11_SET1 : - ∀A,B:SET1.∀w:arrows2 SET1 A B.∀a,b:Type_OF_objs2 A.eq'' ? a b→eq'' ? (w a) (w b). -intros; apply (prop11 A B w a b e); +definition Type1_OF_SET1: Type_OF_category2 SET1 → Type1. + intro; whd in t; apply (carr1 t); qed. +coercion Type1_OF_SET1. + +definition Type_OF_setoid1_of_carr: ∀U. carr U → Type_OF_setoid1 ?(*(setoid1_of_SET U)*). + [ apply rule U; + | intros; apply c;] +qed. +coercion Type_OF_setoid1_of_carr. -interpretation "SET dagger" 'prop1 h = (prop11_SET1 _ _ _ _ _ h). -notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }. interpretation "unary morphism1" 'Imply a b = (arrows2 SET1 a b). -interpretation "SET1 eq" 'eq x y = (eq_rel1 _ (eq'' _) x y). \ No newline at end of file + +lemma unary_morphism1_of_arrows1_SET1: ∀S,T. (S ⇒ T) → unary_morphism1 S T. + intros; apply t; +qed. +coercion unary_morphism1_of_arrows1_SET1.