X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fsoftware%2Fmatita%2Fcontribs%2Fformal_topology%2Foverlap%2Fcprop_connectives.ma;h=13bb825ee9edc3ecca39ff0cecf3f90112cd40f2;hb=ccac4e720ff2a9bee8e1c9d5ba1ea6474db72572;hp=d6c7084b0f511eb92e293d97d80c747c5929a377;hpb=cb98bd7054893edee16aadd6741ec5210b04afbc;p=helm.git diff --git a/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma b/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma index d6c7084b0..13bb825ee 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma @@ -14,7 +14,8 @@ include "logic/connectives.ma". -definition Type3 : Type := Type. +definition Type4 : Type := Type. +definition Type3 : Type4 := Type. definition Type2 : Type3 := Type. definition Type1 : Type2 := Type. definition Type0 : Type1 := Type. @@ -23,14 +24,25 @@ definition Type_of_Type0: Type0 → Type := λx.x. definition Type_of_Type1: Type1 → Type := λx.x. definition Type_of_Type2: Type2 → Type := λx.x. definition Type_of_Type3: Type3 → Type := λx.x. +definition Type_of_Type4: Type4 → Type := λx.x. coercion Type_of_Type0. coercion Type_of_Type1. coercion Type_of_Type2. coercion Type_of_Type3. +coercion Type_of_Type4. definition CProp0 : Type1 := Type0. definition CProp1 : Type2 := Type1. definition CProp2 : Type3 := Type2. +definition CProp3 : Type4 := Type3. +definition CProp_of_CProp0: CProp0 → CProp ≝ λx.x. +definition CProp_of_CProp1: CProp1 → CProp ≝ λx.x. +definition CProp_of_CProp2: CProp2 → CProp ≝ λx.x. +definition CProp_of_CProp3: CProp3 → CProp ≝ λx.x. +coercion CProp_of_CProp0. +coercion CProp_of_CProp1. +coercion CProp_of_CProp2. +coercion CProp_of_CProp3. inductive Or (A,B:CProp0) : CProp0 ≝ | Left : A → Or A B @@ -90,6 +102,22 @@ notation "hvbox(a break ⇔ b)" right associative with precedence 25 for @{'iff1 interpretation "logical iff" 'iff x y = (Iff x y). interpretation "logical iff type1" 'iff1 x y = (Iff1 x y). +inductive exT22 (A:Type2) (P:A→CProp2) : CProp2 ≝ + ex_introT22: ∀w:A. P w → exT22 A P. + +interpretation "CProp2 exists" 'exists \eta.x = (exT22 _ x). + +definition pi1exT22 ≝ λA,P.λx:exT22 A P.match x with [ex_introT22 x _ ⇒ x]. +definition pi2exT22 ≝ + λA,P.λx:exT22 A P.match x return λx.P (pi1exT22 ?? x) with [ex_introT22 _ p ⇒ p]. + +interpretation "exT22 \fst" 'pi1 = (pi1exT22 _ _). +interpretation "exT22 \snd" 'pi2 = (pi2exT22 _ _). +interpretation "exT22 \fst a" 'pi1a x = (pi1exT22 _ _ x). +interpretation "exT22 \snd a" 'pi2a x = (pi2exT22 _ _ x). +interpretation "exT22 \fst b" 'pi1b x y = (pi1exT22 _ _ x y). +interpretation "exT22 \snd b" 'pi2b x y = (pi2exT22 _ _ x y). + inductive exT (A:Type0) (P:A→CProp0) : CProp0 ≝ ex_introT: ∀w:A. P w → exT A P. @@ -106,11 +134,11 @@ definition pi2exT ≝ λA,P.λx:exT A P.match x return λx.P (pi1exT ?? x) with [ex_introT _ p ⇒ p]. interpretation "exT \fst" 'pi1 = (pi1exT _ _). -interpretation "exT \fst" 'pi1a x = (pi1exT _ _ x). -interpretation "exT \fst" 'pi1b x y = (pi1exT _ _ x y). +interpretation "exT \fst a" 'pi1a x = (pi1exT _ _ x). +interpretation "exT \fst b" 'pi1b x y = (pi1exT _ _ x y). interpretation "exT \snd" 'pi2 = (pi2exT _ _). -interpretation "exT \snd" 'pi2a x = (pi2exT _ _ x). -interpretation "exT \snd" 'pi2b x y = (pi2exT _ _ x y). +interpretation "exT \snd a" 'pi2a x = (pi2exT _ _ x). +interpretation "exT \snd b" 'pi2b x y = (pi2exT _ _ x y). inductive exT23 (A:Type0) (P:A→CProp0) (Q:A→CProp0) (R:A→A→CProp0) : CProp0 ≝ ex_introT23: ∀w,p:A. P w → Q p → R w p → exT23 A P Q R. @@ -122,14 +150,15 @@ definition pi2exT23 ≝ interpretation "exT2 \fst" 'pi1 = (pi1exT23 _ _ _ _). interpretation "exT2 \snd" 'pi2 = (pi2exT23 _ _ _ _). -interpretation "exT2 \fst" 'pi1a x = (pi1exT23 _ _ _ _ x). -interpretation "exT2 \snd" 'pi2a x = (pi2exT23 _ _ _ _ x). -interpretation "exT2 \fst" 'pi1b x y = (pi1exT23 _ _ _ _ x y). -interpretation "exT2 \snd" 'pi2b x y = (pi2exT23 _ _ _ _ x y). +interpretation "exT2 \fst a" 'pi1a x = (pi1exT23 _ _ _ _ x). +interpretation "exT2 \snd a" 'pi2a x = (pi2exT23 _ _ _ _ x). +interpretation "exT2 \fst b" 'pi1b x y = (pi1exT23 _ _ _ _ x y). +interpretation "exT2 \snd b" 'pi2b x y = (pi2exT23 _ _ _ _ x y). inductive exT2 (A:Type0) (P,Q:A→CProp0) : CProp0 ≝ ex_introT2: ∀w:A. P w → Q w → exT2 A P Q. + definition Not : CProp0 → Prop ≝ λx:CProp.x → False. interpretation "constructive not" 'not x = (Not x). @@ -149,3 +178,15 @@ definition antisymmetric: ∀A:Type0. ∀R:A→A→CProp0. ∀eq:A→A→Prop.CP definition reflexive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ λA:Type0.λR:A→A→CProp0.∀x:A.R x x. definition transitive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ λA:Type0.λR:A→A→CProp0.∀x,y,z:A.R x y → R y z → R x z. + +definition reflexive1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λA:Type1.λR:A→A→CProp1.∀x:A.R x x. +definition symmetric1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λC:Type1.λlt:C→C→CProp1. ∀x,y:C.lt x y → lt y x. +definition transitive1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λA:Type1.λR:A→A→CProp1.∀x,y,z:A.R x y → R y z → R x z. + +definition reflexive2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λA:Type2.λR:A→A→CProp2.∀x:A.R x x. +definition symmetric2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λC:Type2.λlt:C→C→CProp2. ∀x,y:C.lt x y → lt y x. +definition transitive2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λA:Type2.λR:A→A→CProp2.∀x,y,z:A.R x y → R y z → R x z. + +definition reflexive3: ∀A:Type3.∀R:A→A→CProp3.CProp3 ≝ λA:Type3.λR:A→A→CProp3.∀x:A.R x x. +definition symmetric3: ∀A:Type3.∀R:A→A→CProp3.CProp3 ≝ λC:Type3.λlt:C→C→CProp3. ∀x,y:C.lt x y → lt y x. +definition transitive3: ∀A:Type3.∀R:A→A→CProp3.CProp3 ≝ λA:Type3.λR:A→A→CProp3.∀x,y,z:A.R x y → R y z → R x z.